Publications by authors named "Carolina O Jorge"

Physically active individuals are less likely to develop chronic pain, and physical exercise is an established strategy to control inflammatory diseases. Here, we hypothesized that 1) peripheral pro-inflammatory macrophages phenotype contribute to predisposition of the musculoskeletal to chronic pain, and that 2) activation of PPARγ receptors, modulation of macrophage phenotypes and cytokines through physical exercise would prevent persistent muscle pain. We tested these hypotheses using swimming exercise, pharmacological and immunochemical techniques in a rodent model of persistent muscle hyperalgesia.

View Article and Find Full Text PDF

Pharmacological agents directed to either opioid receptors or peroxisome proliferator-activated receptor gamma (PPARγ) at peripheral tissues reduce behavioral signs of persistent pain. Both receptors are expressed in muscle tissue, but the contribution of PPARγ activation to muscle pain and its modulation by opioid receptors remains unknown. To address this question, we first tested whether the endogenous PPARγ ligand 15d-PGJ2 would decrease mechanical hyperalgesia induced by carrageenan administration into the gastrocnemius muscle of rats.

View Article and Find Full Text PDF

This study aimed to evaluate whether the development and/or maintenance of chronic-latent muscle hyperalgesia is modulated by P2X3 receptors. We also evaluate the expression of P2X3 receptors and PKCε of dorsal root ganglions during these processes. A mouse model of chronic-latent muscle hyperalgesia, induced by carrageenan and evidenced by PGE, was used.

View Article and Find Full Text PDF

Regular physical exercise has been described as a good strategy for prevention or reduction of musculoskeletal pain. The Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) has been investigated as a promising target for the control of inflammatory pain. Therefore, the aim of this study was to evaluate whether activation of PPARγ receptors is involved in the reduction of acute muscle pain by chronic exercise and, in this case, whether this process is modulated by inflammatory cytokines.

View Article and Find Full Text PDF

P2X3 receptors are involved with several pain conditions. Muscle pain induced by static contraction has an important socioeconomic impact. Here, we evaluated the involvement of P2X3 receptors on mechanical muscle hyperalgesia and neutrophil migration induced by static contraction in rats.

View Article and Find Full Text PDF

Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle.

View Article and Find Full Text PDF