Treatment satisfaction is a person's rating of his or her treatment experience, including processes and outcomes. It is directly related to treatment adherence, which may be predictive of treatment effectiveness in clinical and real-world research. Consequently, patient-reported outcome (PRO) instruments have been developed to incorporate patient experience throughout various stages of drug development and routine care.
View Article and Find Full Text PDFFive-year survival for pancreatic ductal adenocarcinoma (PDAC) patients remains below 7% due to the lack of effective treatments. Here, we report that combined ablation of EGFR and c-RAF expression results in complete regression of a significant percentage of PDAC tumors driven by Kras/Trp53 mutations in genetically engineered mice. Moreover, systemic elimination of these targets induces toxicities that are well tolerated.
View Article and Find Full Text PDFThe evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters.
View Article and Find Full Text PDFPapillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers.
View Article and Find Full Text PDFBackground: Genomic analysis of multi-focal renal cell carcinomas from an individual with a germline VHL mutation offers a unique opportunity to study tumor evolution.
Results: We perform whole exome sequencing on four clear cell renal cell carcinomas removed from both kidneys of a patient with a germline VHL mutation. We report that tumors arising in this context are clonally independent and harbour distinct secondary events exemplified by loss of chromosome 3p, despite an identical genetic background and tissue microenvironment.
Despite some advances, pancreatic ductal adenocarcinoma (PDAC) remains generally refractory to current treatments. Desmoplastic stroma, a consistent hallmark of PDAC, has emerged as a major source of therapeutic resistance and thus potentially promising targets for improved treatment. The glycan-binding protein galectin-1 (Gal1) is highly expressed in PDAC stroma, but its roles there have not been studied.
View Article and Find Full Text PDFReplication stress (RS) is a source of DNA damage that has been linked to cancer and aging, which is suppressed by the ATR kinase. In mice, reduced ATR levels in a model of the ATR-Seckel syndrome lead to RS and accelerated aging. Similarly, ATR-Seckel embryonic fibroblasts (MEF) accumulate RS and undergo cellular senescence.
View Article and Find Full Text PDFClinical evidence indicates that mutation/activation of EGF receptors (EGFRs) is mutually exclusive with the presence of K-RAS oncogenes in lung and colon tumors. We have validated these observations using genetically engineered mouse models. However, development of pancreatic ductal adenocarcinomas driven by K-Ras oncogenes are totally dependent on EGFR signaling.
View Article and Find Full Text PDFPancreatic acinar cells of adult mice (≥P60) are resistant to transformation by some of the most robust oncogenic insults including expression of K-Ras oncogenes and loss of p16Ink4a/p19Arf or Trp53 tumor suppressors. Yet, these acinar cells yield pancreatic intraepithelial neoplasias (mPanIN) and ductal adenocarcinomas (mPDAC) if exposed to limited bouts of non-acute pancreatitis, providing they harbor K-Ras oncogenes. Pancreatitis contributes to tumor progression by abrogating the senescence barrier characteristic of low-grade mPanINs.
View Article and Find Full Text PDFBackground: Breast cancer metastasis suppressor 1 (BRMS1) reduces the number and the size of secondary tumours in a mouse model without affecting the growth of the primary foci upon its re-expression. Knockdown of BRMS1 expression associates with metastasis. The molecular details on BRMS1 mechanism of action include its ability to function as a transcriptional co-repressor and consistently BRMS1 has been described as a predominantly nuclear protein.
View Article and Find Full Text PDF