Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1.
View Article and Find Full Text PDFPrecise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate (ISC). Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation.
View Article and Find Full Text PDFGrowth and regeneration of one tissue within an organ compels accommodative changes in the surrounding tissues. However, the molecular nature and operating logic governing these concurrent changes remain poorly defined. The dermal adipose layer expands concomitantly with hair follicle downgrowth, providing a paradigm for studying coordinated changes of surrounding lineages with a regenerating tissue.
View Article and Find Full Text PDFAn increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles.
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2) is an essential regulator of cell physiology. Although there have been numerous studies on PRC2 function in somatic tissue development and stem cell control, these have focused on the loss of a single PRC2 subunit. Recent studies, however, have shown that PRC2 subunits may function independently of the PRC2 complex.
View Article and Find Full Text PDFMerkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown.
View Article and Find Full Text PDFIn a cell, the chromatin state is controlled by the highly regulated interplay of epigenetic mechanisms ranging from DNA methylation and incorporation of different histone variants to posttranslational modification of histones and ATP-dependent chromatin remodeling. These changes alter the structure of the chromatin to either facilitate or restrict the access of transcription machinery to DNA. These epigenetic modifications function to exquisitely orchestrate the expression of different genes, and together constitute the epigenome of a cell.
View Article and Find Full Text PDFAbscission is the last step of cytokinesis that physically separates the cytoplasm of sister cells. As the final stage of cell division, abscission is poorly characterized during animal development. Here, we show that Aurora B and Survivin regulate the number of germ cells in each Drosophila egg chamber by inhibiting abscission during differentiation.
View Article and Find Full Text PDFWhile the Polycomb complex is known to regulate cell identity in ES cells, its role in controlling tissue-specific stem cells is not well understood. Here we show that removal of Ezh1 and Ezh2, key Polycomb subunits, from mouse skin results in a marked change in fate determination in epidermal progenitor cells, leading to an increase in the number of lineage-committed Merkel cells, a specialized subtype of skin cells involved in mechanotransduction. By dissecting the genetic mechanism, we showed that the Polycomb complex restricts differentiation of epidermal progenitor cells by repressing the transcription factor Sox2.
View Article and Find Full Text PDFChromatin regulatory complexes are well known regulators of stem cell fate; however, the mechanisms regulating their activity are not well understood. In this issue of Cell Stem Cell, Bao et al. (2013) show that ACTL6a inhibits targeting of the SWI/SNF complex to differentiation genes, thereby preserving the epidermal progenitor state.
View Article and Find Full Text PDFBackground: Notch signaling plays a critical role in multiple developmental programs and not surprisingly, the Notch pathway has also been implicated in the regulation of many adult stem cells, such as those in the intestine, skin, lungs, hematopoietic system, and muscle.
Scope Of Review: In this review, we will first describe molecular mechanisms of Notch component modulation including recent advances in this field and introduce the fundamental principles of Notch signaling controlling cell fate decisions. We will then illustrate its important and varied functions in major stem cell model systems including: Drosophila and mammalian intestinal stem cells and mammalian skin, lung, hematopoietic and muscle stem cells.
The Drosophila adult posterior midgut has been identified as a powerful system in which to study mechanisms that control intestinal maintenance, in normal conditions as well as during injury or infection. Early work on this system has established a model of tissue turnover based on the asymmetric division of intestinal stem cells. From the quantitative analysis of clonal fate data, we show that tissue turnover involves the neutral competition of symmetrically dividing stem cells.
View Article and Find Full Text PDFTight regulation of self-renewal and differentiation of adult stem cells ensures that tissues are properly maintained. In the Drosophila intestine, both commitment, i.e.
View Article and Find Full Text PDFAdult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood.
View Article and Find Full Text PDF