Publications by authors named "Carolina Moncion"

Electrical activity recordings are critical for evaluating and understanding brain function. We present a novel wireless, implantable, and battery-free device, namely the Wireless Neurosensing System (WiNS), and for the first time, we evaluate multichannel recording capabilities in vivo. For a preliminary evaluation, we performed a benchtop experiment with emulated sinusoidal signals of varying amplitude and frequency, representative of neuronal activity.

View Article and Find Full Text PDF

Optogenetic targeting of astrocytes provides a robust experimental model to differentially induce Ca2+ signals in astrocytes in vivo. However, a systematic study quantifying the response of optogenetically modified astrocytes to light is yet to be performed. Here, we propose a novel stochastic model of Ca2+ dynamics in astrocytes that incorporates a light sensitive component-channelrhodopsin 2 (ChR2).

View Article and Find Full Text PDF

Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca ) oscillations by incorporating light-sensitive cation channels like Channelrhodopsin-2 (ChR2) offers a promising avenue in influencing the long-term progression of these disorders.

View Article and Find Full Text PDF

Wireless implantable neural interfaces can record high-resolution neuropotentials without constraining patient movement. Existing wireless systems often require intracranial wires to connect implanted electrodes to an external head stage or/and deploy an application-specific integrated circuit (ASIC), which is battery-powered or externally power-transferred, raising safety concerns such as infection, electronics failure, or heat-induced tissue damage. This work presents a biocompatible, flexible, implantable neural recorder capable of wireless acquisition of neuropotentials without wires, batteries, energy harvesting units, or active electronics.

View Article and Find Full Text PDF