Publications by authors named "Carolina Lobo"

The Lysosomal Storage disease known as Mucopolysaccharidosis type II, is caused by mutations affecting the iduronate-2-sulfatase required for heparan and dermatan sulfate catabolism. The central nervous system (CNS) is mostly and severely affected by the accumulation of both substrates. The complexity of the CNS damage observed in MPS II patients has been limitedly explored.

View Article and Find Full Text PDF

Background: Glutaminase isoenzymes GLS and GLS2 play apparently opposing roles in cancer: GLS acts as an oncoprotein, while GLS2 (GAB isoform) has context specific tumour suppressive activity. Some microRNAs (miRNAs) have been implicated in progression of tumours, including gliomas. The aim was to investigate the effect of GLS and GAB expression on both miRNAs and oxidative status in glioblastoma cells.

View Article and Find Full Text PDF

Historically, obesity has been identified as one of the most important risk factors for developing cardiovascular diseases including stroke; however, a theory called "The Obesity Paradox" has been recently considered. The paradoxical theory is that obese or overweight patients (according to body mass index score) can have better outcomes compared to leaner or malnourished patients. The paradox was initially discovered in patients with heart failure.

View Article and Find Full Text PDF

Objective: Glaze application on monolithic zirconia (Y-TZP) can be a practical approach to improve the mechanical properties of this material. Our study evaluated the effect of glazing side and mechanical cycling on the biaxial flexure strength (BFS) of a Y-TZP.

Methodology: Eighty sintered Y-TZP discs (Ø:12 mm; thickness: 1.

View Article and Find Full Text PDF

Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood.

View Article and Find Full Text PDF

Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the same cell type would allow cells to fine-tune their Gln/Glu levels under a wide range of metabolic states.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial glutaminase (GA) is crucial for cancer cell metabolism, but the specific roles of its isozymes (KGA and GAB) in cancer are not fully understood.
  • Silencing KGA in glioma cells led to reduced cell survival, increased apoptosis markers, and mitochondrial dysfunction, while GAB overexpression showed different but significant effects.
  • Combining GA expression modulation with oxidizing agents like arsenic trioxide or hydrogen peroxide enhances the therapeutic effects against glioma cells, suggesting a new approach for cancer treatment.
View Article and Find Full Text PDF

Background: Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene.

View Article and Find Full Text PDF

Glutamine is a multifaceted amino acid that plays key roles in many metabolic pathways and also fulfils essential signaling functions. Although classified as non-essential, recent evidence suggests that glutamine is a conditionally essential amino acid in several physiological situations. Glutamine homeostasis must therefore be exquisitely regulated and mitochondria represent a major site of glutamine metabolism in numerous cell types.

View Article and Find Full Text PDF

Liver-type glutaminase (LGA) is a glutaminase isoform that has been implicated in transcription modulation. LGA mRNA is absent from postoperative samples of primary gliomas and is low in cultured astrocytes. In this study, stable transfection of T98G cells with a vector carrying human LGA sequence increased the expression of LGA mRNA and protein, and the ability of the cells to degrade glutamine (Gln), as manifested by a three-fold reduction of their steady-state Gln content and a 2.

View Article and Find Full Text PDF

Glutamine behaves as a key nutrient for tumors and rapidly dividing cells. Glutaminase is the main glutamine-utilizing enzyme in these cells, and its activity correlates with glutamine consumption and growth rate. We have carried out the antisense L-type glutaminase inhibition in human MCF7 breast cancer cells, in order to study its effect on the hexosamine pathway and the pattern of protein O-glycosylation.

View Article and Find Full Text PDF

Glutaminase catalyzes the hydrolysis of glutamine yielding stoichiometric amounts of glutamate plus ammonium ions. In mammals, there are two different genes encoding for glutaminase, known as liver (L) and kidney (K) types. The human L-type isoform expressed in baculovirus yielded functional recombinant enzyme in Sf9 insect cells.

View Article and Find Full Text PDF

Ehrlich ascites tumor cells (EATC) is a highly proliferative malignant cell line derived from mouse mammary epithelia, whereas their derivative, 0.28AS-2 cells, expressing antisense glutaminase mRNA, show a less transformed phenotype and loss of their tumorigenic capacity in vivo correlated with an inhibition of glutaminase expression. The mRNA differential display technique was applied to these two cell lines for the identification and isolation of genes whose transcription was altered.

View Article and Find Full Text PDF

Background: Glutaminase activity is correlated with cancer proliferation and with growth rate in normal cells. Ehrlich ascites tumour cells (EATC) and their derivative 0.28AS-2 cells, which express antisense glutaminase mRNA, show differences in both morphology and tumorigenic capacity.

View Article and Find Full Text PDF

Tumor cells expressing antisense glutaminase RNA show a drastic inhibition of glutaminase activity and they acquire a more differentiated phenotype. We have studied the expression of Sp1 and Sp3 transcription factors in both Ehrlich tumor cells and their derivative 0.28AS-2 antisense glutaminase expressing cells.

View Article and Find Full Text PDF

Glutamine is an essential amino acid in cancer cells and is required for the growth of many other cell types. Glutaminase activity is positively correlated with malignancy in tumours and with growth rate in normal cells. In the present work, Ehrlich ascites tumour cells, and their derivative, 0.

View Article and Find Full Text PDF