Changed NMDA receptor (NMDAr) physiology is implicated with cognitive deficit resulting from conditions ranging from normal aging to neurological disease. Using intermittent hypoxia (IH) to experimentally model untreated sleep apnea, a clinical condition whose comorbidities include neurocognitive impairment, we recently demonstrated that IH causes a pro-oxidant condition that contributes to deficits in spatial memory and in NMDAr-dependent long-term potentiation (LTP). However, the impact of IH on additional forms of synaptic plasticity remains ill-defined.
View Article and Find Full Text PDFOver one billion adults worldwide are estimated to suffer from sleep apnea, a condition with wide-reaching effects on brain health. Sleep apnea causes cognitive decline and is a risk factor for neurodegenerative conditions such as Alzheimer's disease. Rodents exposed to intermittent hypoxia (IH), a hallmark of sleep apnea, exhibit spatial memory deficits associated with impaired hippocampal neurophysiology and dysregulated adult neurogenesis.
View Article and Find Full Text PDFBromodomain and extraterminal (BET) proteins are essential to pro-inflammatory gene transcription. The BET family proteins, BRD2, BRD3, BRD4, and testis-specific BRDT, couple chromatin remodeling to gene transcription, acting as histone acetyltransferases, scaffolds for transcription complexes, and markers of histone acetylation. To initiate an inflammatory response, cells undergo de novo gene transcription requiring histone-modifying proteins to make DNA wrapped around histones more or less readily available to transcription complexes.
View Article and Find Full Text PDF