Publications by authors named "Carolina Fernandes De Angelis"

The metallurgy industry is a potent global source of particulate matter (PM) atmospheric emissions. A portion of this PM may settle in aquatic (SePM) carrying metal/metalloid particles and metallic nanoparticles. Surprisingly, this form of contamination has not received due attention from most environmental monitoring agencies.

View Article and Find Full Text PDF

The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies.

View Article and Find Full Text PDF

Metallic smoke released by steel industries is constitute by a mixture of fine and gross particles containing metals, including the emerging ones, which sedimentation contaminates soil and aquatic ecosystems and put in risk the resident biota. This study determined the metal/metalloids in the atmospheric settleable particulate matter (SePM, particles >10 μm) from a metallurgical industrial area and evaluated metal bioconcentration, antioxidant responses, oxidative stress, and the histopathology in the gills, hepatopancreas and kidneys of fat snook fish (Centropomus parallelus) exposed to different concentrations of SePM (0.0, 0.

View Article and Find Full Text PDF

Steel industry emissions of atmospheric particulate matter are responsible for air to water cross-contamination, which deposits metal/metalloid contaminants in aquatic ecosystems. This source of contamination has not been considered in most of the environmental monitoring protocols. Settleable atmospheric particulate matter (SePM) collected in an area of steel industry influence was used to analyze the sublethal effects on the hematological and innate immunological variables in Nile tilapia (Oreochromis niloticus) after short-term exposure (96 h).

View Article and Find Full Text PDF