Clinical evidence has revealed that children born from mothers exposed to viral and bacterial pathogens during pregnancy are more likely to suffer various neurological disorders including schizophrenia, autism bipolar disorder, major depression, epilepsy, and cerebral palsy. Despite that most research has centered on the impact of prenatal inflammation in neurons and microglia, the potential modifications of astrocytes and neuron-astrocyte communication have received less scrutiny. Here, we evaluated whether prenatally LPS-exposed offspring display alterations in the opening of astrocyte hemichannels and pannexons in the hippocampus, together with changes in neuroinflammation, intracellular Ca and nitric oxide (NO) signaling, gliotransmitter release, cell arborization, and neuronal survival.
View Article and Find Full Text PDFSeveral epidemiological studies indicate that children born from mothers exposed to infections during gestation, have an increased risk to develop neurological disorders, including schizophrenia, autism and cerebral palsy. Given that it is unknown if astrocytes and their crosstalk with neurons participate in the above mentioned brain pathologies, the aim of this work was to address if astroglial paracrine signaling mediated by Cx43 and Panx1 unopposed channels could be affected in the offspring of LPS-exposed dams during pregnancy. Ethidium uptake experiments showed that prenatal LPS-exposure increases the activity of astroglial Cx43 and Panx1 unopposed channels in the offspring.
View Article and Find Full Text PDF