Unlabelled: We have created a precisely pegylated IL-2 [SAR-444245 (SAR'245) or pegenzileukin, previously THOR-707] designed for proliferation of target CD8+ T and NK cells for anticancer activity, with minimal expansion of anti-target regulatory CD4+ T cells (Treg) that counter their action, or eosinophils that trigger vascular leak syndrome (VLS). We performed in vivo studies in nonhuman primates (NHP) to monitor the safety of SAR'245, pharmacokinetic profile, and pharmacodynamic parameters including expansion of peripheral CD8+ T and NK cells, and effects on Tregs and eosinophils. Studies included multiple ascending dosing and repeat dosing with different regimens (QW, Q2W, Q3W and Q4W).
View Article and Find Full Text PDFBackground: Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index.
Methods: A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells.
The implementation of applied engineering principles to create synthetic biological systems promises to revolutionize medicine, but application of fundamentally redesigned organisms has thus far not impacted practical drug development. Here we utilize an engineered microbial organism with a six-letter semi-synthetic DNA code to generate a library of site-specific, click chemistry compatible amino acid substitutions in the human cytokine IL-2. Targeted covalent modification of IL-2 variants with PEG polymers and screening identifies compounds with distinct IL-2 receptor specificities and improved pharmacological properties.
View Article and Find Full Text PDFSince at least the last common ancestor of all life on Earth, genetic information has been stored in a four-letter alphabet that is propagated and retrieved by the formation of two base pairs. The central goal of synthetic biology is to create new life forms and functions, and the most general route to this goal is the creation of semi-synthetic organisms whose DNA harbours two additional letters that form a third, unnatural base pair. Previous efforts to generate such semi-synthetic organisms culminated in the creation of a strain of Escherichia coli that, by virtue of a nucleoside triphosphate transporter from Phaeodactylum tricornutum, imports the requisite unnatural triphosphates from its medium and then uses them to replicate a plasmid containing the unnatural base pair dNaM-dTPT3.
View Article and Find Full Text PDFToxoplasma gondii is an intracellular parasite that transitions from acute infection to a chronic infective state in its intermediate host via encystation, which enables the parasite to evade immune detection and clearance. It is widely accepted that the tissue cyst perimeter is highly and specifically decorated with glycan modifications; however, the role of these modifications in the establishment and persistence of chronic infection has not been investigated. Here we identify and biochemically and biologically characterize a Toxoplasma nucleotide-sugar transporter (TgNST1) that is required for cyst wall glycosylation.
View Article and Find Full Text PDFThe intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling.
View Article and Find Full Text PDFNucleotide sugar transporters of the Golgi apparatus play an essential role in the glycosylation of proteins, lipids, and proteoglycans. Down-regulation of expression of the transporters for CMP-sialic acid, GDP-fucose, or both unexpectedly resulted in accumulation of glycoconjugates in the Golgi apparatus rather than in the plasma membrane. Pulse-chase experiments with radiolabeled sugars and amino acids showed decreased synthesis and secretion of both nonglycoproteins and glycoproteins.
View Article and Find Full Text PDFThe genome of Caenorhabditis elegans encodes for 18 putative nucleotide sugar transporters even though its glycome only contains 7 different monosaccharides. To understand the biological significance of this phenomenon, we have begun a systematic substrate characterization of the above putative transporters and have determined that the gene ZK896.9 encodes a Golgi apparatus transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine.
View Article and Find Full Text PDFTransporters of nucleotide sugars regulate the availability of these substrates required for glycosylation reactions in the lumen of the Golgi apparatus and play an important role in the development of multicellular organisms. Caenorhabditis elegans has seven different sugars in its glycoconjugates, although 18 putative nucleotide sugar transporters are encoded in the genome. Among these, SQV-7, SRF-3, and CO3H5.
View Article and Find Full Text PDFApproximately 80% of secreted and membrane proteins (40% of all proteins) of eukaryotes become covalently linked to sugars in the lumen of the Golgi apparatus, a cellular organelle that is part of the secretory system of all eukaryotes. The sugar donors are mostly nucleoside diphosphate sugars (nucleotide sugars) and must be translocated from the cytosol, their site of synthesis, across the Golgi apparatus membrane and into the lumen by specific transporters. These are hydrophobic, homodimeric proteins that span the membrane multiple times.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2006
Nucleotide sugar transporters play an essential role in protein and lipid glycosylation, and mutations can result in developmental phenotypes. We have characterized a transporter of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine encoded by the Caenorhabditis elegans gene C03H5.2.
View Article and Find Full Text PDFEntamoeba histolytica is a protozoan parasite that causes dysentery in developing countries of Africa, Asia, and Latin America. The lack of a defined Golgi apparatus in E. histolytica as well as in other protists led to the hypothesis that they had evolved prior to the acquisition of such organelle even though glycoproteins, glycolipids, and antigens have been detected, the latter of which react with antibodies against Golgi apparatus proteins of higher eukaryotes.
View Article and Find Full Text PDF