ChemMedChem
August 2011
Perphosphorylated pentopyranoses and pentofuranoses were synthesized from parent carbohydrates as potential allosteric effectors of hemoglobin (Hb). The construction of seven- and eight-membered cyclic pyrophosphates was also carried out successfully on most of the pentoses. All final compounds were tested for their efficiency on oxygen release from human Hb.
View Article and Find Full Text PDFVarious 2,5- and 1,4-substituted and unsubstituted myo-inositol tetrakisphosphates and bispyrophosphates were prepared following a general synthetic pathway. All final compounds were tested for their capability to induce oxygen release from human hemoglobin. Most of these proved to be efficient allosteric effectors, with similar affinities for hemoglobin to that of myo-inositol hexakisphosphate, which is one of the best known allosteric effectors of hemoglobin.
View Article and Find Full Text PDFPolyphosphorylated and perphosphorylated hexopyranose monosaccharides and disaccharides were synthesized from parent or partially protected carbohydrates as potential allosteric effectors of hemoglobin. A study toward the construction of seven- and eight-membered cyclic pyrophosphates was also performed on the sugars which had the proper orientation, protection, and number of phosphates. All final compounds were tested for their efficiency on oxygen release from human hemoglobin.
View Article and Find Full Text PDFmyo-Inositol trispyrophosphate (ITPP), a novel membrane-permeant allosteric effector of hemoglobin (Hb), enhances the regulated oxygen release capacity of red blood cells, thus counteracting the effects of hypoxia in diseases such as cancer and cardiovascular ailments. ITPP-induced shifting of the oxygen-hemoglobin equilibrium curve in red blood cells (RBCs) was inhibited by DIDS and NAP-taurine, indicating that band 3 protein, an anion transporter mainly localized on the RBC membrane, allows ITPP entry into RBCs. The maximum intracellular concentration of ITPP, determined by ion chromatography, was 5.
View Article and Find Full Text PDFA major determinant of maximal exercise capacity is the delivery of oxygen to exercising muscles. myo-Inositol trispyrophosphate (ITPP) is a recently identified membrane-permeant molecule that causes allosteric regulation of Hb oxygen binding affinity. In normal mice, i.
View Article and Find Full Text PDFWe described herein the molecular design of novel in vivo anti-inflammatory 6-methanesulfonamide-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives (1) planned by applying the molecular hybridization approach. This work also points out to the discovery of LASSBio-930 (1c) as a novel anti-inflammatory and anti-hyperalgesic prototype, which was able to reduce carrageenan-induced rat paw edema with an ED(50) of 97.8 micromol/kg, acting mainly as a non-selective COX inhibitor.
View Article and Find Full Text PDFPrivileged structures are defined as molecular frameworks which are able of providing useful ligands for more than one type of receptor or enzyme target by judicious structural modifications. In the present work, we describe some examples and applications of the usefulness of the privileged structure concept for the structural design of new drug candidates, by discussing the eligibility of such motifs, including the identification of the N-acylhydrazone template as privileged structures.
View Article and Find Full Text PDFWe describe herein the discovery of LASSBio-881 (3c) as a novel in vivo antinociceptive, anti-inflammatory, and in vitro antiproliferative and antioxidant compound, with a cannabinoid ligand profile. We observed that LASSBio-881 (3c) was able to bind to CB1 receptors (71% at 100microM) and also to inhibit T-cell proliferation (66% at 10microM) probably by binding to CB2 receptors, in a non-proapoptotic manner, different from anandamide (1). It was also demonstrated that LASSBio-881 (3c) had an important antioxidant profile toward free radicals (DPPH and hydroxyl), probably due to its particular redox behavior, which reflects the presence of both nitro and 3,5-di-tert-butyl-4-hydroxyphenyl sub-units, as demonstrated by cyclic voltammetry studies.
View Article and Find Full Text PDF