Publications by authors named "Carolina Courage"

Ceroid lipofuscinosis type 2 (CLN2) is caused by biallelic pathogenic variants in the TPP1 gene, encoding lysosomal tripeptidyl peptidase 1 (TPP1). The classical late-infantile phenotype has an age of onset between 2 and 4 years and is characterized by psychomotor regression, myoclonus, ataxia, blindness, and shortened life expectancy. Vision loss occurs due to retinal degeneration, usually when severe neurological symptoms are already evident.

View Article and Find Full Text PDF

Congenital disorders of glycosylation (CDG) comprise a class of inborn errors of metabolism resulting from pathogenic variants in genes coding for enzymes involved in the asparagine-linked glycosylation of proteins. Unexpectedly to date, no CDG has been described for , encoding the alpha-1,2-glucosyltransferase catalyzing the final step of lipid-linked oligosaccharide biosynthesis. Genome-wide association studies (GWAS) of human traits in the UK Biobank revealed significant SNP associations with short sleep duration, reduced napping frequency, later sleep timing and evening diurnal preference as well as cardiac traits at a genomic locus containing a pair of paralogous enzymes and .

View Article and Find Full Text PDF

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery.

View Article and Find Full Text PDF

Objective: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature.

View Article and Find Full Text PDF
Article Synopsis
  • - Cat Eye Syndrome (CES) is a rare genetic disorder linked to a marker chromosome from chromosome 22, leading to diverse symptoms including iris coloboma, anal atresia, and preauricular tags, but these are present in less than half of the cases.
  • - An international study of 43 CES patients found that only 16% displayed all three classic symptoms, while 9% showed none; additional issues such as cardiac anomalies (51%) and intellectual disabilities (47%) were also common.
  • - The study highlights the significance of supernumerary marker chromosomes (sSMC), found in 91% of cases, with many parents showing mild traits, emphasizing the need for genetic counseling regarding recurrence risks.
View Article and Find Full Text PDF

The vacuolar H-ATPase is a large multi-subunit proton pump, composed of an integral membrane V0 domain, involved in proton translocation, and a peripheral V1 domain, catalysing ATP hydrolysis. This complex is widely distributed on the membrane of various subcellular organelles, such as endosomes and lysosomes, and plays a critical role in cellular processes ranging from autophagy to protein trafficking and endocytosis. Variants in , the brain-enriched isoform in the V0 domain, have been recently associated with developmental delay and epilepsy in four individuals.

View Article and Find Full Text PDF

Background And Objectives: To assess the current diagnostic yield of genetic testing for the progressive myoclonus epilepsies (PMEs) of an Italian series described in 2014 where Unverricht-Lundborg and Lafora diseases accounted for ∼50% of the cohort.

Methods: Of 47/165 unrelated patients with PME of indeterminate genetic origin, 38 underwent new molecular evaluations. Various next-generation sequencing (NGS) techniques were applied including gene panel analysis (n = 7) and/or whole-exome sequencing (WES) (WES singleton n = 29, WES trio n = 7, and WES sibling n = 4).

View Article and Find Full Text PDF

In collaboration with the German Angelman syndrome (AS) community, we developed a web-based AS Online Registry to congregate existing as well as future information and scientifically quantify observations made by parents, families and medical professionals. With its user-friendly design as well as its concise and multilingual questionnaire, the registry aims at families who had so far refrained from being recruited by other, more comprehensive and/or English-only, registries. Data can be entered by both parents/families and medical professionals.

View Article and Find Full Text PDF

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers performed exome sequencing on two unrelated families with progressive myoclonus epilepsy and discovered a rare variant affecting the SLC7A6OS gene in both families.
  • The analysis showed that this genetic change caused splice site issues, leading to abnormal protein expression linked to the condition.
  • Haplotype analysis indicated a common ancestor between the families, supporting the idea that loss-of-function variants in SLC7A6OS could be a new genetic cause of this type of epilepsy.
View Article and Find Full Text PDF

Pontocerebellar hypoplasia type 6 (PCH6) is a rare infantile-onset progressive encephalopathy caused by biallelic mutations in RARS2 that encodes the mitochondrial arginine-tRNA synthetase enzyme (mtArgRS). The clinical presentation overlaps that of PEHO syndrome (Progressive Encephalopathy with edema, Hypsarrhythmia and Optic atrophy). The proband presented with severe intellectual disability, epilepsy with varying seizure types, optic atrophy, axial hypotonia, acquired microcephaly, dysmorphic features and progressive cerebral and cerebellar atrophy and delayed myelination on MRI.

View Article and Find Full Text PDF

Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1-related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson-Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1.

View Article and Find Full Text PDF

Objective: FOXG1 syndrome is a rare neurodevelopmental disorder associated with heterozygous variants or chromosomal microaberrations in 14q12. The study aimed at assessing the scope of structural cerebral anomalies revealed by neuroimaging to delineate the genotype and neuroimaging phenotype associations.

Methods: We compiled 34 patients with a heterozygous (likely) pathogenic variant.

View Article and Find Full Text PDF

Optic atrophy 1 (OPA1) is a mitochondrial inner membrane protein that has an important role in mitochondrial fusion and structural integrity. Dysfunctional OPA1 mutations cause atrophy of the optic nerve leading to blindness. Here, we show that OPA1 has an important role in the innate immune system.

View Article and Find Full Text PDF

We present a case of diaphanospondylodysostosis (DSD) which showed increased nuchal translucency at 1st trimester and missing ossification of the lower spine, short ribs with posterior gaps, and absent nasal bone in midtrimester. Autopsy revealed additionally bilateral nephroblastomatosis. Molecular genetic analysis showed a new mutation in the BMPER gene.

View Article and Find Full Text PDF

Background: Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing.

View Article and Find Full Text PDF

Objective: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients.

Methods: We collected 24 SLC6A1 probands and 6 affected family members.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the clinical and genetic features of FOXG1 syndrome, focusing on 30 new patients and 53 previously reported ones with FOXG1 variants.
  • Researchers found 54 different variants, with notable findings that truncating variants in specific domains led to more severe symptoms, while certain missense variants resulted in milder phenotypes.
  • The results suggest a higher variability in symptoms than previously thought and can aid in genetic counseling and understanding new FOXG1 variants.
View Article and Find Full Text PDF

Background: We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of encephalopathy and explored potential prospects of personalised medicine.

Methods: Data of 48 individuals with de novo variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care.

View Article and Find Full Text PDF

Isolated defects of the mitochondrial respiratory complex II (succinate dehydrogenase, SDH) are rare, accounting for approximately 2% of all respiratory chain deficiency diagnoses. Here, we report clinical and molecular investigations of three family members with a heterozygous mutation in the large flavoprotein subunit SDHA previously described to cause complex II deficiency. The index patient presented with bilateral optic atrophy and ocular movement disorder, a progressive polyneuropathy, psychiatric involvement, and cardiomyopathy.

View Article and Find Full Text PDF

Objective: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.

Methods: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to provide a detailed overview of STXBP1 encephalopathy by reviewing both newly diagnosed and previously documented cases.
  • Researchers gathered data from an international network and found 147 patients with significant phenotypic features, including severe intellectual disability and high prevalence of epilepsy.
  • The findings suggest that STXBP1-E is a complex neurodevelopmental disorder characterized by independent dimensions of seizure severity and intellectual disability rather than being solely an epileptic condition.
View Article and Find Full Text PDF

We report two patients with microdeletions in chromosomal subdomain 15q26.1 encompassing only two genes, CHD2 and RGMA. Both patients present a distinct phenotype with intellectual disability, epilepsy, behavioral issues, truncal obesity, scoliosis and facial dysmorphism.

View Article and Find Full Text PDF

Purpose: Sodium channel gene aberrations are associated with a wide range of seizure disorders, particularly Dravet syndrome. They usually consist of missense or truncating gene mutations or deletions. Duplications involving multiple genes encoding for different sodium channels are not widely known.

View Article and Find Full Text PDF

Purpose: Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient's epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks.

View Article and Find Full Text PDF