Publications by authors named "Carolina Centeno Cerdas"

Article Synopsis
  • - This study focuses on creating biocompatible scaffolds using polylactic acid (PLA), calcium phosphate, and diatomaceous earth for bone regeneration, with a goal of improving cell adhesion and biodegradability.
  • - The optimal composite mix (20 PLA/1 CP/1 DE) showed almost no cytotoxicity following gamma sterilization and was tested for its mechanical properties, which were found to be similar to cancellous bone.
  • - Degradation tests over 13 weeks indicated stability without significant mass loss, and successful cell interaction was noted, suggesting potential for these 3D-printed scaffolds as alternatives to traditional bone implants.
View Article and Find Full Text PDF

Micellar microemulsions are thermodynamically stable self-emulsifying systems that have been used to successfully improve the low oral bioavailability of several bioactive phytochemicals, such as antioxidant polyphenols. However, most studies have reported the micellization of single-compounds or purified chemical fractions; thus, the stability, phytochemical-loading efficiency, and bioactivity of complex crude extracts remain largely unexplored. In this study, we evaluated the effects of micellar emulsification of tropical apple ( cv.

View Article and Find Full Text PDF

The recent use of photosynthetic organisms such as Chlamydomonas reinhardtii in biomedical applications has demonstrated their potential for the treatment of acute and chronic tissue hypoxia. Moreover, transgenic microalgae have been suggested as an alternative in situ drug delivery system. In this study, we set out to identify the best available combination of strains and expression vectors to establish a robust platform for the expression of human pro-angiogenic growth factors, i.

View Article and Find Full Text PDF

Background: Beside botulinum-toxin injections and hyaluronic acid fillers, thread lifts have established themselves as the third column of minimally invasive facial rejuvenation. Most commonly, barbed threads for this approach are made out of polydioxanone, a material known for decades from application in resorbable sutures. The clinical efficacy and the putative material safety of polydioxanone have fueled the popularity of thread lifts.

View Article and Find Full Text PDF

Surgical sutures represent the gold standard for wound closure, however, their main purpose is still limited to a mechanical function rather than playing a bioactive role. Since oxygen and pro-regenerative growth factors have been broadly described as key players for the healing process, in this study we evaluated the feasibility of generating photosynthetic sutures that, in addition to mechanical fixation, could locally and stably release oxygen and recombinant human growth factors (VEGF, PDGF-BB, or SDF-1α) at the wound site. Here, photosynthetic genetically modified microalgae were seeded in commercially available sutures and their distribution and proliferation capacity was evaluated.

View Article and Find Full Text PDF

The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model.

View Article and Find Full Text PDF