Background: Chagas disease cardiomyopathy is characterized by intense immune activation, with double-negative (DN) T cells as key producers of inflammatory cytokines. CD1d is an antigen-presenting molecule involved in the activation of DN T cells.
Methods: We characterized CD1d+ monocytes from patients with cardiac (CARD) and indeterminate (IND) disease using flow cytometry.
The release of DNA to the extracellular milieu is a biological process referred to as etosis, which is involved in both physiological and pathological functions. Although the release of DNA extracellular traps (ETs) was initially attributed to innate immune cells such as neutrophils, eosinophils, and macrophages, recent studies have shown that T cells, as well as non-immune cells, are capable of releasing ETs. These structures were described primarily for their potential to trap and kill pathogens, presenting an important strategy of host defense.
View Article and Find Full Text PDFCD4CD8 (double negative - DN) T cells represent a small fraction of circulating T lymphocytes but are a major source of pro-inflammatory cytokines in patients with infectious diseases, including chronic Chagas cardiomyopathy (CCC), one of the deadliest cardiopathies known. Chagas disease is caused by an infection with the protozoan parasite Trypanosoma cruzi and can lead to either an asymptomatic form or a high-mortality cardiac disease. While circulating DN T cells represent a major inflammatory cytokine-expressing cell population in Chagas disease, their potential to be recruited to the heart and to perform cytotoxicity has not been determined.
View Article and Find Full Text PDFChagas disease, a neglected disease caused by the protozoan , is endemic in 21 Latin American countries, affecting 6-8 million people. Increasing numbers of Chagas disease cases have also been reported in non-endemic countries due to migration, contamination via blood transfusions or organ transplantation, characterizing Chagas as an emerging disease in such regions. While most individuals in the chronic phase of Chagas disease remain in an asymptomatic clinical form named indeterminate, approximately 30% of the patients develop a cardiomyopathy that is amongst the deadliest cardiopathies known.
View Article and Find Full Text PDFCD4CD8 (double-negative, DN) T cells are critical orchestrators of the cytokine network associated with the pathogenic inflammatory response in one of the deadliest cardiomyopathies known, Chagas heart disease, which is caused by infection. Here, studying the distribution, activation status, and cytokine expression of memory DN T-cell subpopulations in Chagas disease patients without cardiac involvement (indeterminate form-IND) or with Chagas cardiomyopathy (CARD), we report that while IND patients displayed a higher frequency of central memory, CARD had a high frequency of effector memory DN T cells. In addition, central memory DN T cells from IND displayed a balanced cytokine profile, characterized by the concomitant expression of IFN-γ and IL-10, which was not observed in effector memory DN T cells from CARD.
View Article and Find Full Text PDFCell death plays a fundamental role in mounting protective and pathogenic immunity. Etosis is a cell death mechanism defined by the release of extracellular traps (ETs), which can foster inflammation and exert microbicidal activity. While etosis is often associated with innate cells, recent studies showed that B cells and CD4+ T cells can release ETs.
View Article and Find Full Text PDFMucosal leishmaniasis (ML) is characterized by high production of inflammatory cytokines. Administration of pentoxifylline (PTX), an inhibitor of TNF-alpha, with pentavalent antimony (Sb), has been successfully used as alternative treatment for refractory ML. Our study aims to investigate the in situ cellular response underlying the effectiveness of this therapy, by evaluating the intensity of the inflammatory infiltrate, cellular composition, and expression of cytokines and granzyme A in lesions from ML before and after treatment with Sb alone or in combination with PTX.
View Article and Find Full Text PDF