Fluorination is one of the most efficient and universal strategies to increase the hydrophobicity of materials and consequently their water stability. Zeolitic-imidazolate frameworks (ZIFs), which have limited stability in aqueous media and even lower stability when synthesized on a nanometric scale, can greatly benefit from the incorporation of fluorine atoms, not only to improve their stability but also to provide additional properties. Herein, we report the preparation of two different fluorinated ZIFs through a simple and scalable approach by using mixed ligands [2-methylimidazole, as a common ligand, and 4-(4-fluorophenyl)-1-imidazole ( linker) or 2-methyl-5-(trifluoromethyl)-1-imidazole ( linker) as a dopant], demonstrating the high versatility of the synthetic method developed to incorporate different fluorine-containing imidazole-based ligands.
View Article and Find Full Text PDFWe report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method.
View Article and Find Full Text PDFA selenium-containing metal-organic framework with remarkable antioxidant capacity and ROS-scavenging activity was constructed by a controlled encapsulation approach of a glycoconjugate mimetic, specifically a sp-iminoglycolipid bearing a selenoureido fragment (DSeU), within a zeolitic-imidazolate framework exoskeleton. Biocompatible and homogeneous nanosized particles of ∼70 nm (DSeU@ZIF8) were obtained, which could be efficiently internalized in cells, overcoming the poor solubility in biological media and limited bioavailability of glycolipids. The ZIF-particle served as nanocarrier for the intracellular delivery of the selenocompound to cells, promoted by the acidic pH inside endosomes/lysosomes.
View Article and Find Full Text PDFWe report for the first time the controlled drug release from a nanoscale Zr-based metal-organic framework (MOF), UiO-66, in the presence of the enzyme alkaline phosphatase (ALP). This unprecedented reactivity was possible thanks to the prior functionalization of the MOF with N-PEG-PO ligands, which were designed for three specific aims: (1) to impart colloidal stability in phosphate-containing media; (2) to endow the MOF with multifunctionality thanks to azide groups for the covalent attachment of an imaging agent by click-chemistry; and (3) to confer stimuli-responsive properties, specifically the selective release of doxorubicin triggered by the enzymatic activity of ALP. Cell studies revealed that the functionalization of the MOF with N-(PEG)-PO ligands improved their intracellular stability and led to a sustained drug release compared to the bare MOF.
View Article and Find Full Text PDFThe deployment of metal-organic frameworks (MOFs) in a plethora of analytical and bioanalytical applications is a growing research area. Their unique properties such as high but tunable porosity, well-defined channels or pores, and ease of post-synthetic modification to incorporate additional functional units make them ideal candidates for sensing applications. This is possible because the interaction of analytes with a MOF often results in a change in its structure, eventually leading to a modification of the intrinsic physicochemical properties of the MOF which is then transduced into a measurable signal.
View Article and Find Full Text PDFWe demonstrate for the first time the potential of zeolitic-imidazolate framework-8 nanoparticles to be incorporated within a renal scaffold while retaining their ability to remove uremic toxins (mainly hydrophobic toxins like -cresol) under flow conditions. This work may pave the way for the future development of novel adsorbents for dialysis and/or artificial kidneys.
View Article and Find Full Text PDFWe describe a microporous plasmonic nanoreactor to carry out designed near-infrared (NIR)-driven photothermal cyclizations inside living cells. As a proof of concept, we chose an intramolecular cyclization that is based on the nucleophilic attack of a pyridine onto an electrophilic carbon, a process that requires high activation energies and is typically achieved in bulk solution by heating at ∼90 °C. The core-shell nanoreactor (NR) has been designed to include a gold nanostar core, which is embedded within a metal-organic framework (MOF) based on a polymer-stabilized zeolitic imidazole framework-8 (ZIF-8).
View Article and Find Full Text PDFNanoparticles (NPs) functionalized with antibodies (Abs) on their surface are used in a wide range of bioapplications. Whereas the attachment of antibodies to single NPs to trigger the internalization in cells via receptor-mediated endocytosis has been widely studied, the conjugation of antibodies to larger NP assemblies has been much less explored. Taking into account that NP assemblies may be advantageous for some specific applications, the possibility of incorporating targeting ligands is quite important.
View Article and Find Full Text PDFBiomass-derived materials are put forward as eco-friendly alternatives to design heterogeneous catalysts. To contribute in this field, we explored the potential of mesoporous biogenic silica (RH-Silica) obtained from lignocellulosic waste, in particular from rice husk, as an inorganic support to prepare heterogenized iron oxide-based catalysts. Mechanochemistry, considered as a green and sustainable technique, was employed to synthetize iron oxide nanoparticles in pure hematite phase onto the biosilica (α-FeO/RH-Silica), making this material a good candidate to perform catalyzed organic reactions.
View Article and Find Full Text PDFOne of the main concerns in gluten analysis is to achieve efficient extraction of gluten proteins. Conventional ethanol-based extraction solutions are inefficient and, because of this, it is necessary to use reducing agents or acids for proper solubilization. The extraction recommended by CODEX Standard 118-1979 (revised 2008) utilizes Cocktail solution (patent WO 02/092633 A1).
View Article and Find Full Text PDFInt J Biol Macromol
May 2021
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications.
View Article and Find Full Text PDFTranslating the potential of transition metal catalysis to biological and living environments promises to have a profound impact in chemical biology and biomedicine. A major challenge in the field is the creation of metal-based catalysts that remain active over time. Here, we demonstrate that embedding a reactive metallic core within a microporous metal-organic framework-based cloak preserves the catalytic site from passivation and deactivation, while allowing a suitable diffusion of the reactants.
View Article and Find Full Text PDFProtein corona formation on the surface of nanoparticles (NPs) is observed in situ by measuring diffusion coefficients of the NPs under the presence of proteins with a F nuclear magnetic resonance (NMR) based methodology. Formation of a protein corona reduces the diffusion coefficient of the NPs, based on an increase in their effective hydrodynamic radii. With this methodology it is demonstrated that the apparent dissociation constant of protein-NP complexes may vary over at least nine orders of magnitude for different types of proteins, in line with the Vroman effect.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have emerged as one of the most fascinating libraries of porous materials with a huge potential in very diverse application areas. In particular, the bioanalytical and biomedical fields have evolved tremendously due to the emergence of these hybrid inorganic-organic MOF-based materials. This is because these materials possess a series of key properties essential for bioapplications, such as minimal toxicity to living cells, intrinsic biodegradability, and possibility of synthesizing with nanoscale sizes.
View Article and Find Full Text PDFA plasmonic core-shell gold nanostar/zeolitic-imidazolate-framework-8 (ZIF-8) nanocomposite was developed for the thermoplasmonic-driven release of encapsulated active molecules inside living cells. The nanocomposites were loaded, as a proof of concept, with bisbenzimide molecules as functional cargo and wrapped with an amphiphilic polymer that prevents ZIF-8 degradation and bisbenzimide leaking in aqueous media or inside living cells. The demonstrated molecule-release mechanism relies on the use of near-IR light coupled to the plasmonic absorption of the core gold nanostars, which creates local temperature gradients and thus, bisbenzimide thermodiffusion.
View Article and Find Full Text PDFColloidal CdSe/ZnS quantum dots were water solubilized by overcoating with an amphiphilic polymer. Human serum albumin (HSA) as a model protein was either adsorbed or chemically linked to the surface of the polymer-coated quantum dots. As the quantum dots are intrinsically fluorescent, and as the polymer coating and the HSA were fluorescent labeled, the final nanoparticle had three differently fluorescent components: the quantum dot core, the polymer shell, and the human serum albumin corona.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2019
Fluorescent inorganic quantum dots are highly promising for biomedical applications as sensing and imaging agents. However, the low internalization of the quantum dots, as well as for most of the nanoparticles, by living cells is a critical issue which should be solved for success in translational research. In order to increase the internalization rate of inorganic CdSe/ZnS quantum dots, they were functionalized with a fluorinated organic ligand.
View Article and Find Full Text PDFFluorescent nanoparticles, such as quantum dots, hold great potential for biomedical applications, mainly sensing and bioimaging. However, the inefficient cell uptake of some nanoparticles hampers their application in clinical practice. Here, the effect of the modification of the quantum dot surface with fluorinated ligands to increase their surface activity and, thus, enhance their cellular uptake was explored.
View Article and Find Full Text PDFUnderstanding the interaction of nanoparticles with proteins and how this interaction modifies the nanoparticles’ surface is crucial before their use for biomedical applications. Since fluorinated materials are emerging as potential imaging probes and delivery vehicles, their interaction with proteins of biological interest must be studied in order to be able to predict their performance in real scenarios. It is known that fluorinated planar surfaces may repel the unspecific adsorption of proteins but little is known regarding the same process on fluorinated nanoparticles due to the scarce examples in the literature.
View Article and Find Full Text PDFThe manuscript reports on the preparation of β-cyclodextrin-modified nanodiamonds (βCD-ND) for the extraction and preconcentration of the fluorescent anticancer drug doxorubicin (DOX) from biological samples. The inclusion of DOX into the cavities of β- and γ-cyclodextrin (CD) confirms their utility for selective extraction and elution of the drug based on its good fit to the cyclodextrin cavity. Although both larger cyclodextrins (βCD and γCD) accommodate DOX, DOX clearly prefers the bigger γCD cavities.
View Article and Find Full Text PDFSelf-assembly of nanoparticles provides unique opportunities as nanoplatforms for controlled delivery. By exploiting the important role of noncovalent hydrophobic interactions in the engineering of stable assemblies, nanoassemblies were formed by the self-assembly of fluorinated quantum dots in aqueous medium through fluorine-fluorine interactions. These nanoassemblies encapsulated different enzymes (laccase and α-galactosidase) with encapsulation efficiencies of ≥74 %.
View Article and Find Full Text PDFColloidal nanoparticles (NPs) are a versatile potential platform for in vivo nanomedicine. Inside blood circulation, NPs may undergo drastic changes, such as by formation of a protein corona. The in vivo corona cannot be completely emulated by the corona formed in blood.
View Article and Find Full Text PDFCurr Opin Biotechnol
August 2017
Due to its enormous relevance the corona formation of adsorbed proteins around nanoparticles is widely investigated. A comparison of different experimental techniques is given. Direct measurements of proteins, such as typically performed with mass spectrometry, will be compared with indirect analysis, in which instead information about the protein corona is gathered from changes in the properties of the nanoparticles.
View Article and Find Full Text PDFNovel fluorinated ligands for gold nanoparticle labelling have been designed and synthesised. Several types of gold nanoparticles have been prepared in the presence of these fluorinated ligands alone, or in combination with non-fluorinated ligands. Their colloidal stability in water and other solvents was tested and the magnetic resonance properties of the so-obtained nanoparticles were also assessed in detail.
View Article and Find Full Text PDFRare-earth-based nanoparticles are currently attracting wide research interest in material science, physics, chemistry, medicine, and biology due to their optical properties, their stability, and novel applications. We present in this review a summarized overview of the general and recent developments in their synthesis and functionalization. Their luminescent properties are also discussed, including the latest advances in the enhancement of their emission luminescence.
View Article and Find Full Text PDF