Macroalgal holobiont studies involve understanding interactions between the host, its microbiota, and the environment. We analyzed the effect of bacteria-kelp interactions on phenotypic responses of two genetically distinct populations of giant kelp, Macrocystis pyrifera (north and south), exposed to different nitrogen (N) concentrations. In co-culture experiments with different N concentration treatments, we evaluated kelp growth responses and changes in three specific molecular markers associated with the N cycle, both in epiphytic bacteria (relative abundance of nrfA-gene: cytochrome c nitrite reductase) and macroalgae (expression of NR-gene: nitrate reductase; GluSyn-gene: glutamate synthase).
View Article and Find Full Text PDFInbreeding, the mating between genetically related individuals, often results in reduced survival and fecundity of offspring, relative to outcrossing. Yet, high inbreeding rates are commonly observed in seaweeds, suggesting compensatory reproductive traits may affect the costs and benefits of the mating system. We experimentally manipulated inbreeding levels in controlled crossing experiments, using gametophytes from 19 populations of Macrocystis pyrifera along its Eastern Pacific coastal distribution (EPC).
View Article and Find Full Text PDFThe capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong).
View Article and Find Full Text PDFThe objective of this study was to test, using a field experiment, the effect of genotypic diversity on productivity of farmed populations (Ancud and Chaica, Chile) of the domesticated red alga (formerly known as ), a species considered as economically important in Chile. Monoclonal and polyclonal (4 and 8 genotypes) subplots were outplanted into the mid intertidal in Metri Bay (Puerto Montt, Chile) during summer, a season in which face higher temperatures (>18°C) and low nitrogen availability (<4.00 μmol).
View Article and Find Full Text PDFIn terrestrial plants, it is well known that genetic diversity can affect responses to abiotic and biotic stress and have important consequences on farming. However, very little is known about the interactive effects of genetic and environmental factors on seaweed crops. We conducted a field experiment on Gracilaria chilensis to determine the effect of heterozygosity and nutrient addition on two southern Chilean farms: Ancud and Chaica.
View Article and Find Full Text PDFMacroalgae are photosynthetic, multicellular, sessile eukaryotic organisms that offer diverse habitats for the colonization of epiphytic bacteria, therefore establishing biological interactions of diverse complexity. This review focusses on the interactions between macroalgae and their Epiphytic Bacterial Community (EBC); the main aims are to ascertain whether (1) the epiphytic bacterial groups differ at the phylum and genus levels of the macroalgae; (2) the methodologies used so far to study these microorganisms are related in any way to eventual variations of the EBCs on macroalgae; and (3) the EBC of macroalgae has a functional means rather a simple taxonomic grouping. Results showed firstly the taxonomic grouping of macroalgae does not explain the composition and structure of the EBCs.
View Article and Find Full Text PDF