Publications by authors named "Carolina Brandani"

Background: Soil animal communities include more than 40 higher-order taxa, representing over 23% of all described species. These animals have a wide range of feeding sources and contribute to several important soil functions and ecosystem services. Although many studies have assessed macroinvertebrate communities in Brazil, few of them have been published in journals and even fewer have made the data openly available for consultation and further use.

View Article and Find Full Text PDF

The fungal community plays an important role in forest ecosystems via the provision of resources to plant nutrition and productivity. However, the ecology of the fungal network and its relationship with phosphorus (P) dynamics remain poorly understood in mixed forest plantations. Here, we analyzed the fungal community using the amplicon sequencing in plantations of pure Eucalyptus grandis, with (E + N) and without N fertilization (E), besides pure Acacia mangium (A), and in a consortium of E.

View Article and Find Full Text PDF

Recent evidence suggests an upward trend in surface water phosphorus (P) concentrations in many segments of Florida, including the upper basin of the St. Johns River, a region that currently receives about two-thirds of the state Class B biosolids land application. Concerns about water quality in this area are encouraging reexamination of the regulations governing biosolids programs.

View Article and Find Full Text PDF

The use of organic amendments is important for the sustainability of organic farming, with implications for soil organic matter turnover, nutrient cycling and greenhouse gases (GHGs) emissions to the atmosphere. Here, we investigated how long-term citrus organic farming influenced carbon sequestration and GHG emissions under organic and conventional management. We assessed the effects of management systems on soil organic matter dynamics and GHG emissions, focusing on NO direct emissions from fertilizers.

View Article and Find Full Text PDF

Intercropping forest plantations of with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped and plantations.

View Article and Find Full Text PDF