Concussion, or mild traumatic brain injury, is caused by sudden mechanical forces impacting the brain either directly or through inertial loading. This can lead to physical, behavioural and cognitive impairments. Despite concussion being a significant health issue, our understanding of the relationship between initial impact force and the subsequent neurological consequences is not well understood.
View Article and Find Full Text PDFA mild traumatic brain injury is a neurological disturbance of transient or/and chronic nature after a direct blow of the head/neck or exposure of the body to impulsive biomechanical forces, indirectly affecting the brain. The neuropathological events leading to the clinical signs, symptoms and functional disturbances are still elusive due to a lack of sensitive brain-screening tools. Animal models offer the potential to study neural pathomechanisms in close detail.
View Article and Find Full Text PDFA mild traumatic brain injury is a neurological dysfunction caused by biomechanical forces transmitted to the brain in physical impacts. The current understanding of the neuropathological cascade resulting in the manifested clinical signs and symptoms is limited due to the absence of sensitive brain imaging methods. Zebrafish are established models for the reproduction and study of neurobiological pathologies.
View Article and Find Full Text PDFThe startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval.
View Article and Find Full Text PDFNeural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition.
View Article and Find Full Text PDFZebrafish is an established animal model for the reproduction and study of neurobiological pathogenesis of human neurological conditions. The 'startle reflex' in zebrafish larvae is an evolutionarily preserved defence response, manifesting as a quick body-bend in reaction to sudden sensory stimuli. Changes in startle reflex habituation characterise several neuropsychiatric disorders and hence represent an informative index of neurophysiological health.
View Article and Find Full Text PDFNeural synchronization patterns are involved in several complex cognitive functions and constitute a growing trend in neuroscience research. While synchrony patterns in working memory have been extensively discussed, a complete understanding of their role in cognitive control and inhibition is still elusive. Here, we provide an up-to-date review on synchronization patterns underlying behavioral inhibition, extrapolating common grounds, and dissociating features with other inhibitory functions.
View Article and Find Full Text PDF