Publications by authors named "Carolina Alva"

Optical coherence tomography (OCT) has emerged as an in-line monitoring technique for pharmaceutical coating processes based on a representative number of samples. In this study, an approach was developed to correlate the coating thickness measured in-line via OCT with the resultant tablet dissolution profile. This strategy enables prediction of the dissolution profile of coated oral dosage forms for each individual state of the coating process in real-time.

View Article and Find Full Text PDF

High-shear (HS) melt granulation and hot melt extrusion (HME) were compared as perspective melt-based technologies for preparation of amorphous solid dispersions (ASDs). ASDs were prepared using mesoporous carriers (Syloid 244FP or Neusilin US2), which were loaded with carvedilol dispersed in polymeric matrix (polyethylene glycol 6000 or Soluplus). Formulations with high carvedilol content were obtained either by HME (11 extrudates with polymer:carrier ratio 1:1) or HS granulation (6 granulates with polymer:carrier ratio 3:1).

View Article and Find Full Text PDF

Lipid excipients are favorable materials in pharmaceutical formulations owing to their natural, biodegradable, low-toxic and solubility/permeability enhancing properties. The application of these materials with advanced manufacturing platforms, particularly filament-based 3D-printing, is attractive for personalized manufacturing of thermolabile drugs. However, the filament's weak mechanical properties limit their full potential.

View Article and Find Full Text PDF

The present study deals with the development of dexamethasone (DM)-loaded implants using ester end-capped Resomer RG 502 poly(lactic acid-co-glycolic acid) (PLGA) (502), acid end-capped Resomer RG 502H PLGA (502H), and a 502H:502 mixture (3:1) via hot melt extrusion (HME). The prepared intravitreal implants (20 and 40% DM loaded in each PLGA) were thoroughly investigated to determine the effect of different end-capped PLGA and drug loading on the long-term release profile of DM. The implants were characterized for solid-state active pharmaceutical ingredient (APIs) using DSC and SWAXS, water uptake during stability study, the crystal size of API in the implant matrix using hot-stage polarized light microscopy, and in vitro release profile.

View Article and Find Full Text PDF

The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus and Kollidon VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% / SEDDSs was conducted.

View Article and Find Full Text PDF

In order to expand the limited portfolio of available polymer-based excipients for fabricating three-dimensional (3D) printed pharmaceutical products, Lipid-based excipients (LBEs) have yet to be thoroughly investigated. The technical obstacle of LBEs application is, however their crystalline nature that renders them very brittle and challenging for processing via 3D-printing. In this work, we evaluated the functionality of LBEs for filament-based 3D-printing of oral dosage forms.

View Article and Find Full Text PDF

This study addressed the need for a flexible (personalizable) production of biologics, allowing their stabilization in the solid state and processing of small batch volumes. Therefore, inkjet printing into vials followed by a gentle vacuum drying step at ambient temperature was investigated by screening different formulations with a 2-full factorial design of experiments regarding printability. Human Serum Albumin (HSA) was used as a model protein in a wide range of concentrations (5 to 50 mg/ml), with (10 w/v%) and without the surfactant polysorbate 80 (PS80).

View Article and Find Full Text PDF

Purpose: Inkjet printing has the potential to enable novel personalized and tailored drug therapies based on liposome and lipid nanoparticles. However, due to the significant shear force exerted on the jetted fluids, its suitability for shear-sensitive materials such as liposomes, has not been verified. We have conducted a proof-of-concept study to examine whether the particle concentration and size distribution of placebo liposomes are affected by common inkjet/dispensing technologies.

View Article and Find Full Text PDF

Following our study on the impact of hot melt extrusion (HME) process conditions on the product quality, we expanded our investigation to assessing the effect of scale-up on the product quality. To this end, we studied the influence of process settings and different scale-up variants on the active pharmaceutical ingredient (API) degradation in a pilot plant scale extruder. Six scale-up variants were investigated and none of them could replicate the product quality from the original process setup on a lab-scale extruder.

View Article and Find Full Text PDF

In product development, it is crucial to choose the appropriate drug manufacturing route accurately and timely and to ensure that the technique selected is suitable for achieving the desired product quality. Guided by the QbD principles, the pharmaceutical industry is currently transitioning from batch to continuous manufacturing. In this context, process understanding and prediction are becoming even more important.

View Article and Find Full Text PDF