Publications by authors named "Carolin Ulbrich"

While perovskite solar cells have reached competitive efficiency values during the last decade, stability issues remain a critical challenge to be addressed for pushing this technology towards commercialisation. In this study, we analyse a large homogeneous dataset of Maximum Power Point Tracking (MPPT) operational ageing data that we collected with a custom-built High-throughput Ageing System in the past 3 years. In total, 2,245 MPPT ageing curves are analysed which were obtained under controlled conditions (continuous illumination, controlled temperature and atmosphere) from devices comprising various lead-halide perovskite absorbers, charge selective layers, contact layers, and architectures.

View Article and Find Full Text PDF

This article provides datasets containing three years worth of solar spectra for the optimum installation angle of 35° and the building-integrated-photovoltaics relevant vertical angle of 90°. These datasets were obtained by measuring the spectrally resolved solar spectra using a five minute interval, where two sets of spectrometers, which measure different ranges of the solar spectrum, were employed. In addition, a merged dataset of these two spectral measurements, related to every specific five minute interval measurement, is provided.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have shown great potential for next-generation photovoltaics. One of the main barriers to their commercial use is their poor long-term stability under ambient conditions and, in particular, their sensitivity to moisture and oxygen. Therefore, several encapsulation strategies are being developed in an attempt to improve the stability of PSCs in a humid environment.

View Article and Find Full Text PDF

Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell.

View Article and Find Full Text PDF

Restricting the angular range in which a photovoltaic system emits light, is a promising but rather unexplored approach to enhance conversion efficiency. In this paper we analyze and discuss the effect of a directionally selective filter on the absorption of light and the generation of charge carriers in a germanium solar cell. A directionally selective filter transmits photons of perpendicular incidence and reflects photons under oblique incidence in a given spectral range.

View Article and Find Full Text PDF

A directionally selective multilayer filter is applied to a hydrogenated amorphous silicon solar cell to improve the light trapping. The filter prevents non-absorbed long-wavelength photons from leaving the cell under oblique angles leading to an enhancement of the total optical path length for weakly absorbed light within the device by a factor of kappa(r) = 3.5.

View Article and Find Full Text PDF

We suggest a design for a coating that could be applied on top of any solar cell having at least one diffusing surface. This coating acts as an angle and wavelength selective filter, which increases the average path length and absorptance at long wavelengths without altering the solar cell performance at short wavelengths. The filter design is based on a continuous variation of the refractive index in order to minimize undesired reflection losses.

View Article and Find Full Text PDF