Inhibition of endothelin-A (ET(A)) receptors has been shown to reduce ventricular electrical abnormalities associated with cardiac failure. In this study, we investigate the effect of ET(A)-receptor inhibition on the development of regional alterations of the transient outward K(+) current (I (to)) in the setting of pressure-induced left ventricular (LV) hypertrophy. Cardiac hypertrophy was induced in female Sprague-Dawley rats by stenosis of the ascending aorta (AS) for 7 days.
View Article and Find Full Text PDFObjective: A reduction of the Ca(2+)-independent transient outward potassium current (I(to)) in epicardial but not in endocardial myocytes of the left ventricle has been observed in cardiac hypertrophy and is thought to contribute to the electrical vulnerability associated with this pathology.
Methods: In the present study we investigated the molecular mechanisms underlying regional alterations in I(to) in hypertrophied hearts of spontaneously hypertensive rats (SHR) using the whole-cell patch-clamp technique, quantitative RT-PCR and heterologous expression of underlying ion channel subunits.
Results: I(to) was significantly smaller in epicardial myocytes of SHR than in Wistar-Kyoto (WKY) controls (11.