Publications by authors named "Carolin Moosmann"

The efficacy of antitumor immunity is associated with the metabolic state of cytotoxic T cells, which is sensitive to the tumor microenvironment. Whether ionic signals affect adaptive antitumor immune responses is unclear. In the present study, we show that there is an enrichment of sodium in solid tumors from patients with breast cancer.

View Article and Find Full Text PDF

Introduction: Treatment of severe COVID-19 disease can be challenging in immunocompromized patients due to newly emerging virus variants of concern (VOC) escaping the humoral response. Thus, T cells recognizing to date unmutated epitopes are not only relevant for patients' immune responses against VOC, but might also serve as a therapeutic option for patients with severe COVID-19 disease in the future, e.g.

View Article and Find Full Text PDF

Background: Vaccines are an important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 180 days after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both.

View Article and Find Full Text PDF

Adoptive T cell therapy using T-cell receptor (TCR)-engineered T cells allows to redirect T cell specificity and to target any antigen of interest. Here, we apply advanced genetic engineering using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) for simultaneous editing of TCR α- and β-chains in primary human T cells. Together with non-virally delivered template DNA, this CRISPR-Cas9-system allows for elimination of the endogenous TCR and orthotopic placement of TCR α- and β-chains.

View Article and Find Full Text PDF

Carbon fixation, in addition to the evolution of metabolism, is a main requirement for the evolution of life. Here, we report a one-pot carbon fixation of acetylene (CH) and carbon monoxide (CO) by aqueous nickel sulfide (NiS) under hydrothermal (>100 °C) conditions. A slurry of precipitated NiS converts acetylene and carbon monoxide into a set of C-products that are surprisingly representative for C-segments of all four central CO-fixation cycles of the domains Bacteria and Archaea, whereby some of the products engage in the same interconversions, as seen in the central CO-fixation cycles.

View Article and Find Full Text PDF