Tetrahedral DNA hybrids with tetrakis(p-hydroxyphenyl)methane cores hybridize in a sequence-specific fashion at much higher temperatures than isolated linear duplexes. Dinucleotide DNA arms suffice to induce the formation of a solid at room temperature; this demonstrates the strength of multivalent binding. The graphic shows a view of a modeled assembly.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
April 2008
Incomplete binding, saturation, and cross-hybridization between partially complementary strands complicate the parallel detection of nucleic acids via DNA microarrays. Treating the competing equilibria governing binding to microarrays requires computational tools. We have developed the web-based program ChipCheckII that calculates total hybridization matrices for target strands interacting with probes on small DNA microarrays.
View Article and Find Full Text PDFThe high fidelity detection of multiple DNA sequences in multiplex assays calls for duplexes whose stability is independent of sequence (isostable DNA), forming under universally stringent conditions. Nature did not evolve DNA to form isostable duplexes. Here we report how probe strands can be modified so that an all-A/T target strand is bound with the same or slightly higher affinity than the corresponding all-G/C strand with the same sequence of purines and pyrimidines.
View Article and Find Full Text PDF[reaction: see text] A synthesis for oligodeoxynucleotides with a 3'-terminal 2'-N-methyl-2'-acylamido-2'-deoxyuridine residue was developed. Unlike their unmethylated counterparts, these oligodeoxynucleotides can be stably immobilized on aldehyde-displaying glass surfaces to provide DNA microarrays. An anthraquinone carboxamido group as a 2'-substituent doubled the capture efficiency of an immobilized tetradecamer.
View Article and Find Full Text PDFThe 5-position of pyrimidines in DNA duplexes offers a site for introducing alkynyl substituents that protrude into the major groove and thus do not sterically interfere with helix formation. Substituents introduced at the 5-position of the deoxyuridine residue of dU:dA base pairs may stabilize duplexes and reinforce helices weakened by a low G/C content, which would otherwise lead to false negative results in DNA chip experiments. Here we report on a method for preparing oligonucleotides with a 5-alkynyl substituent at a 2'-deoxyuridine residue by on-support Sonogashira coupling involving the fully assembled oligonucleotide.
View Article and Find Full Text PDF