Publications by authors named "Carolin A Rickert"

With its potential to revolutionize the field of personalized medicine by producing customized medical devices and constructs for tissue engineering at low costs, 3D printing has emerged as a highly promising technology. Recent advancements have sparked increasing interest in the printing of biopolymeric hydrogels. However, owing to the limited printability of those soft materials, the lack of variability in available bio-inks remains a major challenge.

View Article and Find Full Text PDF

To achieve and maintain good operability of medical devices while reducing putative side effects for the patient, a promising strategy is to tailor the surface properties of such devices as they critically dictate the tissue compatibility and the biofouling behavior. Indeed, those properties can be strongly improved by generating mucin coatings on such medical devices. However, using coatings on optical systems, e.

View Article and Find Full Text PDF

A fluent conversation with a virtual assistant, person-tailored news feeds, and deep-fake images created within seconds-all those things that have been unthinkable for a long time are now a part of our everyday lives. What these examples have in common is that they are realized by different means of machine learning (ML), a technology that has fundamentally changed many aspects of the modern world. The possibility to process enormous amount of data in multi-hierarchical, digital constructs has paved the way not only for creating intelligent systems but also for obtaining surprising new insight into many scientific problems.

View Article and Find Full Text PDF

Similar to how CRISPR has revolutionized the field of molecular biology, machine learning may drastically boost research in the area of materials science. Machine learning is a fast-evolving method that allows for analyzing big data and unveiling correlations that otherwise would remain undiscovered. It may hold invaluable potential to engineer novel functional materials with desired properties, a field, which is currently limited by time-consuming trial and error approaches and our limited understanding of how different material properties depend on each other.

View Article and Find Full Text PDF

Most biofilm research has so far focused on investigating biofilms generated by single bacterial strains. However, such single-species biofilms are rare in nature where bacteria typically coexist with other microorganisms. Although, from a biological view, the possible interactions occurring between different bacteria are well studied, little is known about what determines the material properties of a multi-species biofilm.

View Article and Find Full Text PDF

A stable, good coverage of the corneal tissue by the tear film is essential for protecting the eye. Contact lenses, however, constitute a foreign body that separates the tear film into two thinner layers, which are then more vulnerable toward disruption. This effect is even more pronounced if the contact lenses possess an insufficient surface wettability, which, in addition to friction, is suggested to be linked to discomfort and damage to the ocular surface.

View Article and Find Full Text PDF

Mucin glycoproteins, the macromolecular components of mucus, combine a broad range of biomedically important properties. Among those is the ability of mucin solutions to act as excellent lubricants. However, to be able to use purified, endogenous mucin glycoproteins as components of a biomedical product, the mucins need to be sterile; this, in turn, makes it necessary to subject the mucins to quite harsh physical treatments, such as heat exposure, autoclaving, UV-, or γ-irradiation, which might compromise the functionality of the glycoproteins.

View Article and Find Full Text PDF

Recent research indicates that the progression of Parkinson's disease can start from neurons of the enteric nervous system, which are in close contact with the gastrointestinal epithelium: α-synuclein molecules can be transferred from these epithelial cells in a prion-like fashion to enteric neurons. Thin mucus layers constitute a defense line against the exposure of noninfected cells to potentially harmful α-synuclein species. We show that-despite its mucoadhesive properties-α-synuclein can translocate across mucin hydrogels, and this process is accompanied by structural rearrangements of the mucin molecules within the gel.

View Article and Find Full Text PDF