Publications by authors named "Carolien Woolthuis"

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by the (oligo)clonal expansion of myeloid progenitor cells. Despite advances in treatment, AML remains challenging to cure, particularly in patients with specific genetic abnormalities. Menin inhibitors have emerged as a promising therapeutic approach, targeting key genetic drivers of AML such as KMT2A rearrangements and NPM1 mutations.

View Article and Find Full Text PDF

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) often presents as an oligoclonal disease whereby multiple genetically distinct subclones can coexist within patients. Differences in signaling and drug sensitivity of such subclones complicate treatment and warrant tools to identify them and track disease progression. We previously identified >50 AML-specific plasma membrane (PM) proteins, and 7 of these (CD82, CD97, FLT3, IL1RAP, TIM3, CD25, and CD123) were implemented in routine diagnostics in patients with AML (n = 256) and myelodysplastic syndrome (n = 33).

View Article and Find Full Text PDF
Article Synopsis
  • Hematopoietic stem cells (HSCs) and committed progenitor cells undergo different protein synthesis regulations, impacting their growth and development.
  • LSK cells have low overall translation but effectively use specific mRNAs critical for maintaining HSCs, while myeloid progenitors (MPs) translate proteins through an mTOR-independent pathway.
  • The study identifies novel mechanisms of translational regulation in HSPCs, highlighting the role of the E3 ubiquitin ligase c-Cbl in controlling mTOR levels and its effect on myeloid cell production.
View Article and Find Full Text PDF

Despite significant efforts to improve therapies for acute myeloid leukemia (AML), clinical outcomes remain poor. Understanding the mechanisms that regulate the development and maintenance of leukemic stem cells (LSCs) is important to reveal new therapeutic opportunities. We have identified CD97, a member of the adhesion class of G protein-coupled receptors (GPCRs), as a frequently up-regulated antigen on AML blasts that is a critical regulator of blast function.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used label-free quantitative proteomics to identify 50 unique plasma membrane proteins that help isolate genetically distinct subclones from AML patients, revealing differences in drug sensitivity and growth.
  • * The study demonstrates that these identified markers can be utilized for better cancer diagnosis and treatment by tracking specific leukemic clones in patients over time.
View Article and Find Full Text PDF

The microRNA-99 (miR-99) family comprises a group of broadly conserved microRNAs that are highly expressed in hematopoietic stem cells (HSCs) and acute myeloid leukemia stem cells (LSCs) compared with their differentiated progeny. Herein, we show that miR-99 regulates self-renewal in both HSCs and LSCs. miR-99 maintains HSC long-term reconstitution activity by inhibiting differentiation and cell cycle entry.

View Article and Find Full Text PDF

K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated.

View Article and Find Full Text PDF

Adipose tissue (AT) has previously been identified as an extra-medullary reservoir for normal hematopoietic stem cells (HSCs) and may promote tumor development. Here, we show that a subpopulation of leukemic stem cells (LSCs) can utilize gonadal adipose tissue (GAT) as a niche to support their metabolism and evade chemotherapy. In a mouse model of blast crisis chronic myeloid leukemia (CML), adipose-resident LSCs exhibit a pro-inflammatory phenotype and induce lipolysis in GAT.

View Article and Find Full Text PDF

The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny.

View Article and Find Full Text PDF

Most of our knowledge of the effects of aging on the hematopoietic system comes from studies in animal models. In this study, to explore potential effects of aging on human hematopoietic stem and progenitor cells (HSPCs), we evaluated CD34(+) cells derived from young (<35 years) and old (>60 years) adult bone marrow with respect to phenotype and in vitro function. We observed an increased frequency of phenotypically defined stem and progenitor cells with age, but no distinct differences with respect to in vitro functional capacity.

View Article and Find Full Text PDF

Patients who have undergone autologous stem cell transplantation are subsequently more susceptible to chemotherapy-induced bone marrow toxicity. In the present study, bone marrow primitive progenitor cells were examined one year after autologous stem cell transplantation and compared with normal bone marrow and mobilized peripheral blood stem cells. Post-transplantation bone marrow contained a significantly lower percentage of quiescent cells in the CD34(+)/CD38(low) fraction compared to normal bone marrow.

View Article and Find Full Text PDF

Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia.

View Article and Find Full Text PDF

During development hematopoietic stem cells (HSCs) expand in number and persist throughout life by undergoing self-renewing divisions. Nevertheless, the hematopoietic system does not escape the negative effects of aging, suggesting that self-renewal is not complete. A fundamental issue in stem cell biology relates to such age-dependent loss of stem cell activity.

View Article and Find Full Text PDF

Aging is generally considered to be the consequence of stem cell attrition caused by the activity of tumor suppressor pathways that censor potentially malignant clones by eliciting apoptosis or senescence. An important effector of aging is the cyclindependent kinase inhibitor p16(INK4a), which is also a known suppressor of cancer. The expression of p16(INK4a) is very low or absent in young organisms but increases with advancing age.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) has a different clinical and biologic behavior in patients at older age. To gain further insight into the molecular differences, we examined a cohort of 525 adults to compare gene expression profiles of the one-third of youngest cases (n = 175; median age 31 years) with the one-third of oldest cases (n = 175; median age 59 years). This analysis revealed that 477 probe sets were up-regulated and 492 probe sets were down-regulated with increasing age at the significance level of P < .

View Article and Find Full Text PDF