Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment.
View Article and Find Full Text PDFObesity is a risk factor for complications in singleton and twin pregnancies; however, there are limited data regarding maternal body mass index (BMI) in the setting of twin-twin transfusion syndrome (TTTS). We hypothesized that increased BMI in TTTS is associated with adverse perinatal outcomes and vascular pathology. A retrospective study of twin reversed arterial perfusion (n = 4), selective intrauterine growth restriction (n = 10) and TTTS (n = 33) was conducted.
View Article and Find Full Text PDFGranular cell tumor is a benign tumor of likely neural or neuroectodermal origin that occurs most commonly in the subcutaneous tissues of the trunk, breast, and extremities of adults. Congenital gingival lesions comprise the majority of the pediatric granular cell tumors. Granular cell tumors are generally small and asymptomatic, and while 1 in 10 patients has multiple tumors, recurrence and malignancy are very rare.
View Article and Find Full Text PDFQuadruple synchronous primary neoplasms are exceedingly rare with only one case reported in the English literature. We herein report a case of synchronous quadruple primary neoplasms in a 70-year-old Arabic male with a history of prostate cancer who presented to our hospital for work-up of a brain mass found at an outside hospital. Subsequent (18)Fluorodeoxyglucose (FDG) positron emission tomography demonstrated a 5.
View Article and Find Full Text PDFGloboid-cell Leukodystrophy (GLD; Krabbe's disease) is a rapidly progressing inherited demyelinating disease caused by a deficiency of the lysosomal enzyme Galactosylceramidase (GALC). Deficiency of GALC leads to altered catabolism of galactosylceramide and the cytotoxic lipid, galactosylsphingosine (psychosine). This leads to a rapidly progressive fatal disease with spasticity, cognitive disability and seizures.
View Article and Find Full Text PDFLow-grade fibromyxoid sarcoma (previously known as Evans tumor) is a rare soft tissue neoplasm characterized by a deceptively bland appearance despite the potential for late metastasis or recurrence. We describe a 13-year-old patient with a popliteal fossa mass initially thought to be benign that, because of array-comparative genomic hybridization findings and subsequent immunohistochemistry, was diagnosed as low-grade fibromyxoid sarcoma. The array-comparative genomic hybridization demonstrated a loss of 11p11.
View Article and Find Full Text PDFEnzyme replacement therapy has been used successfully in many lysosomal storage diseases. However, correction of brain storage has been limited by the inability of infused enzyme to cross the blood-brain barrier (BBB). We recently reported that PerT-GUS, a form of β-glucuronidase (GUS) chemically modified to eliminate its uptake and clearance by carbohydrate-dependent receptors, crossed the BBB and cleared neuronal storage in an immunotolerant model of murine mucopolysaccharidosis (MPS) type VII.
View Article and Find Full Text PDFGloboid cell leukodystrophy (GLD, Krabbe Disease) is a lysosomal storage disease, resulting from the genetic deficiency of galactosylceramidase (GALC). This disease is marked by accumulation of the cytotoxic lipid psychosine (Psy). Psychosine is known to induce oxidative stress in cultured cells, and this stress can be ameliorated through co-treatment with the antioxidant N-acetyl cysteine (NAC).
View Article and Find Full Text PDFIntrathecal (IT) recombinant human α-l-iduronidase (rhIDU) has been shown to reduce mean brain glycosaminoglycans (GAGs) to normal levels in mucopolysaccharidosis I (MPS I) dogs. In this study, we examined storage in neuroanatomical regions of the MPS I dog brain, including frontal lobe, cerebellum, basal ganglia, thalamus, hippocampal formation, and brainstem, to determine the response of these functional regions to treatment with IT rhIDU. GAG storage in untreated MPS I dogs was significantly different from normal dogs in all examined sections.
View Article and Find Full Text PDFJ Neurosci
July 2011
Globoid-cell leukodystrophy (GLD) is an inherited demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC). A previous study in the murine model of GLD (twitcher) demonstrated a dramatic synergy between CNS-directed adeno-associated virus 2/5 (AAV2/5) gene therapy and myeloreductive bone marrow transplantation (BMT). However, the mechanism by which these two disparate therapeutic approaches synergize is not clear.
View Article and Find Full Text PDFMucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by loss of activity of α-l-iduronidase and attendant accumulation of the glycosaminoglycans dermatan sulfate and heparan sulfate. Current treatments are suboptimal and do not address residual disease including corneal clouding, skeletal deformities, valvular heart disease, and cognitive impairment. We treated neonatal dogs with MPS I with intravenous recombinant α-l-iduronidase replacement therapy at the conventional 0.
View Article and Find Full Text PDFEnzyme replacement therapy (ERT) with intravenous recombinant human alpha-l-iduronidase (IV rhIDU) is a treatment for patients with mucopolysaccharidosis I (MPS I). Spinal cord compression develops in MPS I patients due in part to dural and leptomeningeal thickening from accumulated glycosaminoglycans (GAG). We tested long-term and every 3-month intrathecal (IT) and weekly IV rhIDU in MPS I dogs age 12-15months (Adult) and MPS I pups age 2-23days (Early) to determine whether spinal cord compression could be reversed, stabilized, or prevented.
View Article and Find Full Text PDFRejuvenation Res
August 2010
Enzyme replacement therapy is an established means of treating lysosomal storage diseases. Infused enzymes are normally targeted to the lysosomes of affected cells by interactions with cell-surface receptors that recognize carbohydrate moieties such as mannose and mannose 6-phosphate on the enzymes. Therefore, we have investigated alternative strategies to deliver the lysosomal enzyme beta-glucuronidase in the enzyme-deficient mucopolysaccharidosis type VII mouse model.
View Article and Find Full Text PDFSanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease resulting from a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. In an attempt to correct the disease in the murine model of MPS IIIB, neonatal mice were treated with intracranial AAV2/5-NAGLU (AAV), syngeneic bone marrow transplant (BMT), or both (AAV/BMT). All treatments resulted in some improvement in clinical phenotype.
View Article and Find Full Text PDFGlycosaminoglycan storage begins in prenatal life in patients with mucopolysaccharidosis (MPS). In fact, prenatal hydrops is a common manifestation of MPS VII because of beta-glucuronidase (GUS) deficiency. One way to address prenatal storage might be to deliver the missing enzyme across the placenta into the fetal circulation.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem cells (MSCs) are a promising platform for cell- and gene-based treatment of inherited and acquired disorders. We recently showed that human MSCs distribute widely in a murine xenotransplantation model. In the current study, we have determined the distribution, persistence, and ability of lentivirally transduced human MSCs to express therapeutic levels of enzyme in a xenotransplantation model of human disease (nonobese diabetic severe combined immunodeficient mucopolysaccharidosis type VII [NOD-SCID MPSVII]).
View Article and Find Full Text PDFWe have tested an acidic oligopeptide-based targeting system for delivery of enzymes to tissues, especially bone and brain, in a murine mucopolysaccharidosis type VII (MPS VII) model. This strategy is based upon tagging a short peptide consisting of acidic amino acids (AAA) to N terminus of human beta-glucuronidase (GUS). The pharmacokinetics, biodistribution, and the pathological effect on MPS VII mouse after 12 weekly infusions were determined for recombinant human untagged and tagged GUS.
View Article and Find Full Text PDFEnzyme replacement therapy has been used successfully in many lysosomal storage diseases. However, correction of brain storage has been limited by the inability of infused enzyme to cross the blood-brain barrier. The newborn mouse is an exception because recombinant enzyme is delivered to neonatal brain after mannose 6-phosphate receptor-mediated transcytosis.
View Article and Find Full Text PDFFamilial hemophagocytic lymphohistiocytosis (FHLH) is an autosomal recessive disorder of cytotoxic cell function that results in abnormal proliferation of benign lymphocytes and histiocytes in response to infectious stimuli. FHLH generally occurs in very young children, and typically presents with fever, cytopenias, coagulopathy, lymphadenopathy, and hepatosplenomegaly. Central nervous system involvement occurs frequently and may precede the development of systemic symptoms by months to years.
View Article and Find Full Text PDFInfantile neuronal ceroid lipofuscinosis (INCL), also known as Santavuori-Haltia disease, is an inherited neurodegenerative disorder caused by a mutation in the gene encoding the lysosomal enzyme palmitoyl-protein-thioesterase-1 (PPT1). Fatty acid-modified proteins are not degraded and accumulate as granular osmiophilic deposits in cells in the central nervous system; patients have blindness, seizures, progressive psychomotor deterioration, and die in early childhood. Although the disease manifests clinically primarily with neurological symptoms, visceral storage also accumulates.
View Article and Find Full Text PDFBackground: Mucopolysaccharidosis (MPS) IIIB (Sanfilippo Syndrome type B) is caused by a deficiency in the lysosomal enzyme N-acetyl-glucosaminidase (Naglu). Children with MPS IIIB develop disturbances of sleep, activity levels, coordination, vision, hearing, and mental functioning culminating in early death. The murine model of MPS IIIB demonstrates lysosomal distention in multiple tissues, a shortened life span, and behavioral changes.
View Article and Find Full Text PDFAdeno-associated viruses (AAV) are promising gene therapy vectors that have little or no acute toxicity. We show that normal mice and mice with mucopolysaccharidosis VII (MPS VII) develop hepatocellular carcinoma (HCC) after neonatal injection of an AAV vector expressing b-glucuronidase. AAV proviruses were isolated from four tumors and were all located within a 6-kilobase region of chromosome 12.
View Article and Find Full Text PDFMucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), required for degradation of keratan sulfate and chondroitin-6-sulfate. In order to study the effects of a missense mutation in the active site cysteine in the GALNS gene that is conserved in all mammalian sulfatases, we produced a p.C76S (an active site replacement) knock-in mouse by replacing the Cys76 with Ser in the endogenous murine Galns by targeted mutagenesis.
View Article and Find Full Text PDF