Publications by authors named "Carole Liedtke"

Mutations in cystic fibrosis transmembrane regulator (CFTR), a chloride channel in the apical membranes of secretory epithelial cells, underlie the fatal genetic disorder cystic fibrosis. Certain CFTR mutations, including the common mutation ΔF508-CFTR, result in greatly decreased levels of active CFTR at the apical membrane. Direct interactions between CFTR and the cytoskeletal adaptors filamin-A (FlnA) and Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) stabilize the expression and localization of CFTR at the plasma membrane.

View Article and Find Full Text PDF

Mice deficient in Na-K-2Cl cotransporter (NKCC1) have been generated by targeted disruption of the gene encoding NKCC1 involving the carboxy terminus (CT-NKCC1) but not the amino terminus. We hypothesize that the resulting physiological defects are due to loss of proteins interacting with CT-NKCC1. Using a yeast two-hybrid approach, adaptor protein COMMD1 was found to bind to CT-NKCC1 (aa 1,040-1,212).

View Article and Find Full Text PDF

Hypertonicity increases urea transport independently of, as well as synergistically with, vasopressin in the inner medullary collect duct (IMCD). We previously showed that hypertonicity does not increase the level of cAMP in the IMCD, but it does increase the level of intracellular calcium. Since we also showed that hypertonicity increases both the phosphorylation and biotinylation of the urea transporters UT-A1 and UT-A3, this would suggest involvement of a calcium-dependent protein kinase in the regulation of urea transport in the inner medulla.

View Article and Find Full Text PDF

Background: Rats chronically fed ethanol for 3 weeks presented a marked decreased in total hepatic Mg(2+) content and required approximately 12 days to restore Mg(2+) homeostasis upon ethanol withdrawal. This study was aimed at investigating the mechanisms responsible for the EtOH-induced delay.

Methods: Hepatocytes from rats fed ethanol for 3 weeks (Lieber-De Carli diet-chronic model), rats re-fed a control diet for varying periods of time following ethanol withdrawal, and age-matched control rats fed a liquid or a pellet diet were used.

View Article and Find Full Text PDF

Mutations in the chloride channel cystic fibrosis transmembrane regulator (CFTR) cause cystic fibrosis, a genetic disorder characterized by defects in CFTR biosynthesis, localization to the cell surface, or activation by regulatory factors. It was discovered recently that surface localization of CFTR is stabilized by an interaction between the CFTR N terminus and the multidomain cytoskeletal protein filamin. The details of the CFTR-filamin interaction, however, are unclear.

View Article and Find Full Text PDF

Airway epithelial Na-K-2Cl (NKCC1) cotransport is activated through hormonal stimulation and hyperosmotic stress via a protein kinase C (PKC) delta-mediated intracellular signaling pathway. Down-regulation of PKCdelta prevents activation of NKCC1 expressed in Calu-3 cells. Previous studies of this signaling pathway identified coimmunoprecipitation of PKCdelta with SPAK (Ste20-related proline alanine-rich kinase).

View Article and Find Full Text PDF

Previous studies from this laboratory demonstrated a role for protein kinase C (PKC)epsilon in the regulation of cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl channel function via binding of PKCepsilon to RACK1, a receptor for activated C kinase, and of RACK1 to human Na(+)/H(+) exchanger regulatory factor (NHERF1). In the present study, we investigated the role of RACK1 in regulating CFTR function in a Calu-3 airway epithelial cell line. Confocal microscopy and biotinylation of apical surface proteins demonstrate apical localization of RACK1 independent of actin.

View Article and Find Full Text PDF

Regulation of the CFTR Cl channel function involves a protein complex of activated protein kinase Cepsilon (PKCepsilon) bound to RACK1, a receptor for activated C kinase, and RACK1 bound to the human Na(+)/H(+) exchanger regulatory factor (NHERF1) in human airway epithelial cells. Binding of NHERF1 to RACK1 is mediated via a NHERF1-PDZ1 domain. The goal of this study was to identify the binding motif for human NHERF1 on RACK1.

View Article and Find Full Text PDF

Activity of Na+-K+-2Cl- co-transport (NKCC1) in epithelia is thought to be highly regulated through phosphorylation and dephosphorylation of the transporter. Previous functional studies from this laboratory suggested a role for protein phosphatase 2A (PP2A) as a serine/threonine protein phosphatase involved in the regulation of mammalian tracheal epithelial NKCC1. We expand on these studies to characterize serine/threonine protein phosphatase(s) necessary for regulation of NKCC1 function and the interaction of the phosphatase(s) with proteins associated with NKCC1.

View Article and Find Full Text PDF

Direct binding of nonmuscle F-actin and the C2-like domain of PKC-delta (deltaC2-like domain) is involved in hormone-mediated activation of epithelial Na-K-2Cl cotransporter isoform 1 (NKCC1) in a Calu-3 airway epithelial cell line. The goal of this study was to determine the site of actin binding on the 123-amino acid deltaC2-like domain. Truncations of the deltaC2-like domain were made by restriction digestion and confirmed by nucleotide sequencing.

View Article and Find Full Text PDF

In past studies, we demonstrated regulation of CFTR Cl channel function by protein kinase C (PKC)-epsilon through the binding of PKC-epsilon to RACK1 (a receptor for activated C-kinase) and of RACK1 to human Na(+)/H(+) exchanger regulatory factor (NHERF1). In this study, we investigated the site of RACK1 binding on NHERF1 using solid-phase and solution binding assays and pulldown, immunoprecipitation, and (36)Cl efflux experiments. Recombinant RACK1 binding to glutathione S-transferase (GST)-tagged PDZ1 domain of NHERF1 was 10-fold higher than its binding to GST-tagged PDZ2 domain of NHERF1.

View Article and Find Full Text PDF

Activation of airway epithelial Na-K-2Cl cotransporter (NKCC)1 requires increased activity of protein kinase C (PKC)-delta, which localizes predominantly to the actin cytoskeleton. Prompted by reports of a role for actin in NKCC1 function, we studied a signaling mechanism linking NKCC1 and PKC. Stabilization of actin polymerization with jasplakinolide increased activity of NKCC1, whereas inhibition of actin polymerization with latrunculin B prevented hormonal activation of NKCC1.

View Article and Find Full Text PDF

Protein kinase C (PKC) regulation of cystic fibrosis transmembrane regulator (CFTR) chloride function has been demonstrated in several cell lines, including Calu-3 cells that express native, wild-type CFTR. We demonstrated previously that PKC epsilon was required for cAMP-dependent CFTR function. The goal of this study was to determine whether PKC epsilon interacts directly with CFTR.

View Article and Find Full Text PDF

In this study, we tested the hypothesis that intracellular Cl(-) (Cl) regulates the activity of protein kinase C (PKC)-delta and thus the activation of Na-K-Cl cotransport (NKCC1) in a Calu-3 cell line. The alpha(1)-adrenergic agonist methoxamine (MOX) and hypertonic sucrose increased Cl and increased or decreased intracellular volume, respectively, without changing Cl concentration ([Cl(-)](i)). Titration of [Cl(-)](i) from 20-140 mM in nystatin-permeabilized cell monolayers did not affect the baseline activity of PKC-delta, PKC-zeta, or rottlerin-sensitive NKCC1.

View Article and Find Full Text PDF

Hyperosmotic stress activates Na+-K+-2Cl- cotransport (NKCC1) in secretory epithelia of the airways. NKCC1 activation was studied as uptake of 36Cl or 86Rb in human tracheal epithelial cells (HTEC). Application of hypertonic sucrose or NaCl increased bumetanide-sensitive ion uptake but did not affect Na+/H+ and Cl-/OH-(HCO3-) exchange carriers.

View Article and Find Full Text PDF