Cerebellum plays a role in the regulation of cognitive processes. Cerebellar alterations could explain cognitive impairments in schizophrenia. We describe the case of a 50 years old patient with schizophrenia whom underwent cerebellar transcranial direct current stimulation (tDCS).
View Article and Find Full Text PDFSpeech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown.
View Article and Find Full Text PDFThe orphan Glutamate receptor Delta2 (GluD2) intrinsic ion channel activity is indirectly triggered by glutamate through stimulation of the metabotropic glutamate receptor 1 (mGlu1), in cerebellar Purkinje cells. However, the mechanisms of GluD2 ion channel opening are entirely unknown. In this work, we investigated the signaling pathways underlying the mGlu1-induced GluD2 current, performing whole-cell voltage-clamp recordings from mGlu1 and GluD2 transfected HEK293 cells.
View Article and Find Full Text PDFThe orphan GluD2 receptor belongs to the ionotropic glutamate receptor family but does not bind glutamate. Ligand-gated GluD2 currents have never been evidenced, and whether GluD2 operates as an ion channel has been a long-standing question. Here, we show that GluD2 gating is triggered by type 1 metabotropic glutamate receptors, both in a heterologous expression system and in Purkinje cells.
View Article and Find Full Text PDFImmature Purkinje neurons are particularly vulnerable cells. They survive in cerebellar slice cultures under treatment by the synthetic steroid mifepristone (RU486) that depolarizes them at this age. The present study aims at understanding the mechanism underlying this neuroprotective effect.
View Article and Find Full Text PDFA classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV).
View Article and Find Full Text PDFThe differentiation and survival of heterozygous Lurcher (+/Lc) Purkinje cells in vitro was examined as a model system for studying how chronic ionic stress affects neuronal differentiation and survival. The Lurcher mutation in the delta2 glutamate receptor (GluRdelta2) converts an orphan receptor into a membrane channel that constitutively passes an inward cation current. In the GluRdelta2(+/Lc) mutant, Purkinje cell dendritic differentiation is disrupted and the cells degenerate following the first week of postnatal development.
View Article and Find Full Text PDFAmong integrative neurons displaying long-term synaptic plasticity, adult Purkinje cells seemed to be an exception by lacking functional NMDA receptors (NMDA-Rs). Although numerous anatomical studies have shown both NR1 and NR2 NMDA-R subunits in adult Purkinje cells, patch-clamp studies failed to detect any NMDA currents. Using more recent pharmacological and immunodetection tools, we demonstrate here that Purkinje cells from adult mice respond to exogenous NMDA application and that postsynaptic NMDA-Rs carry part of the climbing fiber-mediated EPSC (CF-EPSC), with undetectable contribution from presynaptic or polysynaptic NMDA currents.
View Article and Find Full Text PDFDepolarization-induced suppression of inhibition (DSI) is a form of short-term plasticity of GABAergic synaptic transmission that is found in cerebellar Purkinje cells and hippocampal CA1 pyramidal cells. DSI involves the release of a calcium-dependent retrograde messenger by the somatodendritic compartment of the postsynaptic cell. Both glutamate and endogenous cannabinoids have been proposed as retrograde messenger.
View Article and Find Full Text PDF