A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23.
View Article and Find Full Text PDFTeriparatide (PTH (1-34)), PTHrP (1-36), and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy long term is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize they may also differentially modulate the osteoblast transcriptome. Treatment of mouse calvarial osteoblasts with 1 nM of the peptides for 4 hours results in RNA sequencing data with PTH (1-34) regulating 367 genes, including 194 unique genes; PTHrP (1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes.
View Article and Find Full Text PDFTeriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes.
View Article and Find Full Text PDFAbaloparatide is a peptide analog of parathyroid hormone-related protein (PTHrP 1-34) and was approved in 2017 as the second osteoanabolic peptide for treating osteoporosis. We previously showed that intermittent abaloparatide is equally as effective as PTH (1-34). This study was designed to compare the catabolic effects of PTH (1-34) and abaloparatide on bone in young female wild-type mice.
View Article and Find Full Text PDFIntroduction: Parathyroid hormone (PTH) plays an important role in maintaining mineral homeostasis by regulating calcium and phosphate levels. Clinical trials have shown that peptides of PTH (1-34), PTH-related protein (PTHrP 1-36), and the new peptide modeled on PTHrP, abaloparatide, can have different anabolic effects on osteoporotic subjects, but the underlying mechanisms are still unclear. The prevalence of moderate and major gingival recession has been shown to be higher in postmenopausal women with osteoporosis.
View Article and Find Full Text PDFRenal anemia is a common complication in chronic kidney disease (CKD), associated with decreased production of erythropoietin (EPO) due to loss of kidney function, and subsequent decreased red blood cell (RBC) production. However, many other factors play a critical role in the development of renal anemia, such as iron deficiency, inflammation, and elevated fibroblast growth factor 23 (FGF23) levels. We previously reported that inhibition of FGF23 signaling rescues anemia in mice with CKD.
View Article and Find Full Text PDFParathyroid hormone (PTH) is necessary for the regulation of calcium homeostasis and PTH (1-34) was the first approved osteoanabolic therapy for osteoporosis. It is well established that intermittent PTH increases bone formation and that bone remodeling and several cytokines and chemokines play an essential role in this process. Earlier, we had established that the chemokine, monocyte chemoattractant protein-1 (MCP-1/CCL2), was the most highly stimulated gene in rat bone after intermittent PTH injections.
View Article and Find Full Text PDFHypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLRs), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone.
View Article and Find Full Text PDFAbaloparatide, a novel analog of parathyroid hormone-related protein (PTHrP 1-34), became in 2017 the second osteoanabolic therapy for the treatment of osteoporosis. This study aims to compare the effects of PTH (1-34), PTHrP (1-36), and abaloparatide on bone remodeling in male mice. Intermittent daily subcutaneous injections of 80 μg/kg/d were administered to 4-month-old C57Bl/6J male mice for 6 weeks.
View Article and Find Full Text PDFOsteoporosis can result from the loss of sex hormones and/or aging. Abaloparatide (ABL), an analog of parathyroid hormone-related protein (PTHrP(1-36)), is the second osteoanabolic therapy approved by the United States Food and Drug Administration after teriparatide (PTH(1-34)). All three peptides bind PTH/PTHrP receptor type 1 (PTHR1), but the effects of PTHrP(1-36) or ABL in the osteoblast remain unclear.
View Article and Find Full Text PDFThe PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.
View Article and Find Full Text PDFThe bone catabolic actions of parathyroid hormone (PTH) are seen in patients with hyperparathyroidism, or with infusion of PTH in rodents. We have previously shown that the chemokine, monocyte chemoattractant protein-1 (MCP-1), is a mediator of PTH's anabolic effects on bone. To determine its role in PTH's catabolic effects, we continuously infused female wild-type (WT) and MCP-1 mice with hPTH or vehicle.
View Article and Find Full Text PDFStimulating bone formation is an important challenge for bone anabolism in osteoporotic patients or to repair bone defects. The osteogenic properties of matrix glycosaminoglycans (GAGs) have been explored; however, the functions of GAGs at the surface of bone-forming cells are less documented. Syndecan-2 is a membrane heparan sulfate proteoglycan that is associated with osteoblastic differentiation.
View Article and Find Full Text PDFPatients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy.
View Article and Find Full Text PDFThe prevalent human ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with reduced bone formation and bone loss in mice. The molecular mechanisms by which the ΔF508-CFTR mutation causes alterations in bone formation are poorly known. In this study, we analyzed the osteoblast phenotype in ΔF508-CFTR mice and characterized the signaling mechanisms underlying this phenotype.
View Article and Find Full Text PDFThe α5β1 integrin is a key fibronectin (FN) receptor that binds to RGD-containing peptides to mediate cell adhesion. We previously reported that α5β1 integrin promotes osteogenic differentiation in mesenchymal skeletal cells (MSCs), but the underlying mechanisms are not fully understood. In this study, we determined the signaling mechanisms induced by α5β1 integrin interaction with its high-affinity ligand CRRETAWAC in murine and human MSCs and in vivo.
View Article and Find Full Text PDFIntermittent administration of parathyroid hormone (PTH) 1-34 at a standard dose has been shown to induce anabolic effects in bone. However, whether low-dose PTH promotes bone formation during senescence is unknown. To address this issue, we determined the effects of low-dose PTH and analysed the underlying mechanisms in prematurely senescent mice that display osteopenia.
View Article and Find Full Text PDFIn patients with cystic fibrosis (CF), rib and thoracic vertebral fractures can have adverse effects on lung health because the resulting pain and debilitation can impair airway clearance. The F508del mutation in the CF transmembrane conductance regulator (Cftr) gene induces an osteopenic phenotype in humans and mice. N-butyldeoxynojyrimicin (miglustat), an approved drug for treating type 1 Gaucher disease, was found to normalize CFTR-dependent chloride transport in human F508del CFTR lung cells and in nasal mucosa of F508del CF mice.
View Article and Find Full Text PDFWe studied the relationships between hepatic and mesenteric mean blood-flow velocities (mBFVs) measured by ultrasound imaging and (1) downstream tumor angiogenesis during liver metastasis induced by spleen injection of LS174 human colon cells overexpressing the antiangiogenic Netrin4 (LS174-NT4) or not (LS174-WT) and (2) downstream normal angiogenesis during hepatic regeneration after 50% hepatectomy. Liver volume and mBFVs were measured before and after surgery, at day 30 in the first model and at days 2, 7 and 16 in the second model. LS174-NT-4 vs.
View Article and Find Full Text PDFThe F508del mutation in the cystic fibrosis transmembrane conductance regulator (Cftr) gene is believed to be an independent risk factor for cystic fibrosis-related bone disease. In this study, we evaluated the bone mineral density as well as the histomorphometric parameters of bone formation and bone mass in both F508del-Cftr homozygous mice (F508del Cftr(tm1Eur)) and Cftr(+/+) littermate controls at 6 (prepubertal), 10 (pubertal), and 14 (young adult) weeks of age in both sexes. The bone architecture of F508del Cftr(tm1Eur) and wild-type (WT) littermate mice was evaluated by bone densitometry, microcomputed tomography, and analysis of the dynamic parameters of bone formation.
View Article and Find Full Text PDFVoltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)).
View Article and Find Full Text PDFOur findings that PlGF is a cancer target and anti-PlGF is useful for anticancer treatment have been challenged by Bais et al. Here we take advantage of carcinogen-induced and transgenic tumor models as well as ocular neovascularization to report further evidence in support of our original findings of PlGF as a promising target for anticancer therapies. We present evidence for the efficacy of additional anti-PlGF antibodies and their ability to phenocopy genetic deficiency or silencing of PlGF in cancer and ocular disease but also show that not all anti-PlGF antibodies are effective.
View Article and Find Full Text PDFBackground and Aims. An arterial blood supply and phenotypic changes of the sinusoids characterise the liver vasculature in human hepatocellular carcinoma (HCC). We investigated the effects of rosuvastatin on liver vessel anomalies, tumour growth and survival in HCC.
View Article and Find Full Text PDF