Publications by authors named "Carole L Cramer"

GM1-gangliosidosis is a catastrophic, neurodegenerative lysosomal storage disease caused by a deficiency of lysosomal β-galactosidase (β-Gal). The primary substrate of the enzyme is GM1-ganglioside (GM1), a sialylated glycosphingolipid abundant in nervous tissue. Patients with GM1-gangliosidosis present with massive and progressive accumulation of GM1 in the central nervous system (CNS), which leads to mental and motor decline, progressive neurodegeneration, and early death.

View Article and Find Full Text PDF

The greatest challenges for therapeutic efficacy of many macromolecular drugs that act on intracellular are delivery to key organs and tissues and delivery into cells and subcellular compartments. Transport of drugs into critical cells associated with disease, including those in organs protected by restrictive biological barriers such as central nervous system (CNS), bone, and eye remains a significant hurdle to drug efficacy and impacts commercial risk and incentives for drug development for many diseases. These limitations expose a significant need for the development of novel strategies for macromolecule delivery.

View Article and Find Full Text PDF

Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding.

View Article and Find Full Text PDF

GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1(-/-) cells [1].

View Article and Find Full Text PDF

New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients.

View Article and Find Full Text PDF

Enzyme replacement therapies have revolutionized patient treatment for multiple rare lysosomal storage diseases but show limited effectiveness for addressing pathologies in "hard-to-treat" organs and tissues including brain and bone. Here we investigate the plant lectin RTB as a novel carrier for human lysosomal enzymes. RTB enters mammalian cells by multiple mechanisms including both adsorptive-mediated and receptor-mediated endocytosis, and thus provides access to a broader array of organs and cells.

View Article and Find Full Text PDF

It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust), which is based on a novel Common-background and Sparse-foreground Decomposition (CSD) model and the Maximum Block Improvement (MBI) co-clustering technique.

View Article and Find Full Text PDF

We present a new de novo transcriptome assembler, Bridger, which takes advantage of techniques employed in Cufflinks to overcome limitations of the existing de novo assemblers. When tested on dog, human, and mouse RNA-seq data, Bridger assembled more full-length reference transcripts while reporting considerably fewer candidate transcripts, hence greatly reducing false positive transcripts in comparison with the state-of-the-art assemblers. It runs substantially faster and requires much less memory space than most assemblers.

View Article and Find Full Text PDF

Whether your interests lie in scientific arenas, the corporate world, or in government, you have certainly heard the praises of big data: Big data will give you new insights, allow you to become more efficient, and/or will solve your problems. While big data has had some outstanding successes, many are now beginning to see that it is not the Silver Bullet that it has been touted to be. Here our main concern is the overall impact of big data; the current manifestation of big data is constructing a Maginot Line in science in the 21st century.

View Article and Find Full Text PDF

Currently there are definitions from many agencies and research societies defining "bioinformatics" as deriving knowledge from computational analysis of large volumes of biological and biomedical data. Should this be the bioinformatics research focus? We will discuss this issue in this review article. We would like to promote the idea of supporting human-infrastructure (HI) with no-boundary thinking (NT) in bioinformatics (HINT).

View Article and Find Full Text PDF

Computational protein structure prediction mainly involves the main-chain prediction and the side-chain confirmation determination. In this research, we developed a new structural bioinformatics tool, TERPRED for generating dynamic protein side-chain rotamer libraries. Compared with current various rotamer sampling methods, our work is unique in that it provides a method to generate a rotamer library dynamically based on small sequence fragments of a target protein.

View Article and Find Full Text PDF

Plant-based expression technologies for recombinant proteins have begun to receive acceptance for pharmaceuticals and other commercial markets. Protein products derived from plants offer safer, more cost-effective, and less capital-intensive alternatives to traditional manufacturing systems using microbial fermentation or animal cell culture bioreactors. Moreover, plants are now known to be capable of expressing bioactive proteins from a diverse array of species including animals and humans.

View Article and Find Full Text PDF

Protein-specific antibodies serve as critical tools for detection, quantification, and characterization of recombinant proteins. Perhaps the most important and widely used antibody-based procedures for recombinant protein applications are Western immunoblotting and enzyme-linked immunosorbent assays (ELISAs). These analyses require well-characterized, sensitive, and high-affinity antibodies that specifically and selectively recognize the recombinant target protein in the native or denatured form.

View Article and Find Full Text PDF

Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success.

View Article and Find Full Text PDF

Interleukin-12 (IL-12), an important immunomodulator for cell-mediated immunity, shows significant potential as a vaccine adjuvant and anticancer therapeutic in mammals. Therapeutic strategies to develop mammalian IL-12 as a vaccine adjuvant/immunomodulator for promoting cellular immunity and establishing a Th1-biased immune response further support the potential value of ChIL-12. Transgenic plants show promise as scalable bioproduction platforms for challenging biopharmaceutical proteins.

View Article and Find Full Text PDF

Transgene product yield remains a key limitation in commercializing plant-derived pharmaceutical proteins. Although significant progress has been made in understanding the roles of promoters, enhancers, integration sites, codon usage, cryptic RNA sites, silencing, and product compartmentalization on product yield and quality, researchers still cannot reliably predict which proteins will be produced at high levels or what manipulations will guarantee enhanced productivity. We have optimized a simple transient expression system in Nicotiana benthamiana enabling rapid assessment of transgene potential for plant-based bioproduction.

View Article and Find Full Text PDF

We compared the growth and productivity of a tobacco line of hairy roots that produces murine interleukin 12 (mIL-12) grown in three different culture systems: shake flasks, an airlift reactor, and a scalable mist reactor. Of the total mIL-12 produced by cultures grown in shake flasks ( approximately 434.8 microg L(-1)), almost 21% was recovered from the medium.

View Article and Find Full Text PDF

Interleukin-12 (IL-12), an important immunomodulator for cell-mediated immunity, shows significant potential as a vaccine adjuvant and anticancer therapeutic. However, its clinical application is limited in part by lack of an effective bioproduction system for this complex heterodimeric glycoprotein. Transgenic plants show promise as scalable bioproduction platforms for challenging biopharmaceutical proteins.

View Article and Find Full Text PDF

Parasitic plants present some of the most intractable weed problems for agriculture in much of the world. Species of root parasites such as Orobanche can cause enormous yield losses, yet few control measures are effective and affordable. An ideal solution to this problem is the development of parasite-resistant crops, but this goal has been elusive for most susceptible crops.

View Article and Find Full Text PDF

Ricin B (RTB), the non-toxic lectin subunit of ricin, is a promising mucosal adjuvant and carrier for use in humans. RTB fusion proteins have been expressed in tobacco hairy root cultures, but the secreted RTB component of these proteins was vulnerable to protease degradation in the medium. Moreover, castor bean purified RTB spiked into tobacco hairy root culture media showed significant degradation after 24 h and complete loss of product after 72 h.

View Article and Find Full Text PDF

Ricin B (RTB), the lectin subunit of ricin, shows promise as an effective mucosal adjuvant and carrier for use in humans. In order to obtain a recombinant plant source of RTB that is devoid of the toxic ricin A subunit, we expressed RTB in Nicotiana tabacum. RTB was engineered with an N-terminal hexahistidine tag (His-RTB), which may affect protein stability.

View Article and Find Full Text PDF

RicinB, the non-toxic galactose/N-acetylgalactosamine-binding subunit of ricin, was fused to a model antigen, green fluorescent protein (GFP), and expressed in tobacco plants and hairy root cultures to test for utility in mucosal vaccine delivery/adjuvancy. The fusion protein retained both GFP fluorescence and galactose/galactosamine-binding activity. Intranasal immunization of mice with galactosamine-affinity purified ricinB:GFP recovered from tobacco root cultures triggered significant increases in GFP-specific serum IgGs.

View Article and Find Full Text PDF

Identifying take-all pathogens, Gaeumannomyces graminis varieties avenae (Gga), graminis (Ggg), and tritici (Ggt), is difficult. Rapid identification is important for development of disease thresholds. We developed a single-tube, polymerase chain reaction (PCR) method differentiating among Gga, Ggg, and Ggt.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondsofnlsanqrpcj36uiudis2h28r84emi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once