Publications by authors named "Carole L Bassett"

Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening.

View Article and Find Full Text PDF

Background: Individual plants adapt to their immediate environment using a combination of biochemical, morphological and life cycle strategies. Because woody plants are long-lived perennials, they cannot rely on annual life cycle strategies alone to survive abiotic stresses. In this study we used suppression subtractive hybridization to identify genes both up- and down-regulated in roots during water deficit treatment and recovery.

View Article and Find Full Text PDF

CBF (C-repeat Binding Factor) transcription factors are part of the AP2/ERF (Apetala2-ethylene responsive factor) domain family of DNA-binding proteins that recognize a C-repeat response cis-acting element that regulates a number of cold-responsive genes (CBF regulon). Induction of CBF gene expression by low temperature in Arabidopsis has been shown to be gated by a circadian clock. In peach (Prunus persica L.

View Article and Find Full Text PDF

SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156.

View Article and Find Full Text PDF

Background: Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus 'Robusta 5'. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases.

View Article and Find Full Text PDF

Background: The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceae species, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E.

View Article and Find Full Text PDF

Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.

View Article and Find Full Text PDF

Background: Promoters with tissue-specificity are desirable to drive expression of transgenes in crops to avoid accumulation of foreign proteins in edible tissues/organs. Several photosynthetic promoters have been shown to be strong regulators of expression of transgenes in light-responsive tissues and would be good candidates for leaf and immature fruit tissue-specificity, if expression in the mature fruit were minimized.

Results: A minimal peach chlorophyll a/b-binding protein gene (Lhcb2*Pp1) promoter (Cab19) was isolated and fused to an uidA (beta-glucuronidase [GUS]) gene containing the PIV2 intron.

View Article and Find Full Text PDF

Dehydrins are one of several proteins that have been specifically associated with qualitative and quantitative changes in cold hardiness. Recent evidence indicates that the regulation of dehydrin genes by low nonfreezing temperature (LT) and short photoperiod (SD) can be complex and deserves more detailed analysis to better understand the role of specific dehydrin genes and proteins in the response of woody plants to environmental stress. We have identified a new peach (Prunus persica (L.

View Article and Find Full Text PDF

A receptor-like protein kinase gene (Ppsrkl1) was isolated from a peach (Prunus persica (L.) Batsch.) bark cDNA library prepared with RNAs isolated from bark collected in December (cold acclimated).

View Article and Find Full Text PDF

Transformation efficiencies as high as 10(7) transformants microg(-1) DNA have been previously reported for pseudomonads using electroporation protocols established for E. coli with plasmid DNAs prepared from methylation proficient E. coli hosts.

View Article and Find Full Text PDF

Leaf development of shoots exposed to full sunlight and shoots shaded by the canopy was followed in field-grown, mature peach trees (Prunus persica (L.) Batsch, cv. Loring) during the first half of the 1995 growing season.

View Article and Find Full Text PDF

To identify which processes in peach, Prunus persica [L.] Batsch., are associated with changes in ethylene perception, we cloned and characterized a peach homologue of the gene encoding the ethylene receptor, ETR1.

View Article and Find Full Text PDF