Publications by authors named "Carole Knibbe"

While chromosomal rearrangements are ubiquitous in all domains of life, very little is known about their evolutionary significance, mostly because, apart from a few specifically studied and well-documented mechanisms (interaction with recombination, gene duplication, etc.), very few models take them into account. As a consequence, we lack a general theory to account for their direct and indirect contributions to evolution.

View Article and Find Full Text PDF

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle.

View Article and Find Full Text PDF

Background: Soybean lecithin, a plant-based emulsifier widely used in food, is capable of modulating postprandial lipid metabolism. With arising concerns of sustainability, alternative sources of vegetal lecithin are urgently needed, and their metabolic effects must be characterized.

Objectives: We evaluated the impact of increasing doses of rapeseed lecithin (RL), rich in essential α-linolenic acid (ALA), on postprandial lipid metabolism and ALA bioavailability in lymph-cannulated rats.

View Article and Find Full Text PDF

Experimental studies demonstrate the existence of phenotypic diversity despite constant genotype and environment. Theoretical models based on a single phenotypic character predict that during an adaptation event, phenotypic noise should be positively selected far from the fitness optimum because it increases the fitness of the genotype, and then be selected against when the population reaches the optimum. It is suggested that because of this fitness gain, phenotypic noise should promote adaptive evolution.

View Article and Find Full Text PDF

Circulating levels of lipopolysaccharide-binding protein (LBP) and soluble cluster of differentiation 14 (sCD14) are recognized as clinical markers of endotoxemia. In obese men, postprandial endotoxemia is modulated by the amount of fat ingested, being higher compared to normal-weight (NW) subjects. Relative variations of LBP/sCD14 ratio in response to overfeeding are also considered important in the inflammation set-up, as measured through IL-6 concentration.

View Article and Find Full Text PDF

Donor human milk, pasteurised for safety reasons, is the first alternative for feeding preterm infants when mothers' own milk is unavailable. Breastmilk pasteurisation impact on lipid digestion and absorption was evaluated by a static in vitro digestion model for preterm infants coupled with intestinal absorption using Caco-2/TC7 cells. Lipid absorption was quantified by digital image analysis of lipid droplets, by measurement of basolateral triglyceride concentration and by analysing the expression of major genes involved.

View Article and Find Full Text PDF

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an process that transcends the substrate in which it occurs.

View Article and Find Full Text PDF

Dietary fats are present in the diet under different types of structures, such as spread vs emulsions (notably in processed foods and enteral formula), and interest is growing regarding their digestion and intestinal absorption. In clinical trials, there is often a need to add stable isotope-labeled triacylglycerols (TAGs) as tracers to the ingested fat in order to track its intestinal absorption and further metabolic fate. Because most TAG tracers contain saturated fatty acids, they may modify the physicochemical properties of the ingested labeled fat and thereby its digestion.

View Article and Find Full Text PDF

Oxidized LDL (OxLDL) that are enriched in products of lipid peroxidation including oxysterols have been shown to induce cellular oxidative stress and cytotoxicity therefore accelerating atheroma plaque formation. Upon oxLDL exposure of THP-1 macrophages, intracellular oxidation of LDL derived-cholesterol as well as endogenous cholesterol was increased. The oxysterols intracellularly produced were efficiently exported to HDL whereas apolipoprotein A1 was inefficient.

View Article and Find Full Text PDF

Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions.

View Article and Find Full Text PDF

Models of evolution by genome rearrangements are prone to two types of flaws: One is to ignore the diversity of susceptibility to breakage across genomic regions, and the other is to suppose that susceptibility values are given. Without necessarily supposing their precise localization, we call "solid" the regions that are improbably broken by rearrangements and "fragile" the regions outside solid ones. We propose a model of evolution by inversions where breakage probabilities vary across fragile regions and over time.

View Article and Find Full Text PDF

Bacterial genomes show substantial variations in size. The smallest bacterial genomes are those of endocellular symbionts of eukaryotic hosts, which have undergone massive genome reduction and show patterns that are consistent with the degenerative processes that are predicted to occur in species with small effective population sizes. However, similar genome reduction is found in some free-living marine cyanobacteria that are characterized by extremely large populations.

View Article and Find Full Text PDF

We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.

View Article and Find Full Text PDF

Comparative genomics has revealed that some species have exceptional genomes, compared to their closest relatives. For instance, some species have undergone a strong reduction of their genome with a drastic reduction of their genic repertoire. Deciphering the causes of these atypical trajectories can be very difficult because of the many phenomena that are intertwined during their evolution (e.

View Article and Find Full Text PDF

Microbiology research has recently undergone major developments that have led to great progress towards obtaining an integrated view of microbial cell function. Microbial genetics, high-throughput technologies and systems biology have all provided an improved understanding of the structure and function of bacterial genomes and cellular networks. However, integrated evolutionary perspectives are needed to relate the dynamics of adaptive changes to the phenotypic and genotypic landscapes of living organisms.

View Article and Find Full Text PDF

Abstract Systems biology invites us to consider the dynamic interactions between the components of a living cell. Here, by evolving artificial organisms whose genomes encode protein networks, we show that a coupling emerges at the evolutionary time scale between the protein network and the structure of the genome. Gene order is more stable when the protein network is more densely connected, which most likely results from a long-term selection for mutational robustness.

View Article and Find Full Text PDF

A significant part of eukaryotic noncoding DNA is viewed as the passive result of mutational processes, such as the proliferation of mobile elements. However, sequences lacking an immediate utility can nonetheless play a major role in the long-term evolvability of a lineage, for instance by promoting genomic rearrangements. They could thus be subject to an indirect selection.

View Article and Find Full Text PDF

The phenotypic effects of random mutations depend on both the architecture of the genome and the gene-trait relationships. Both levels thus play a key role in the mutational variability of the phenotype, and hence in the long-term evolutionary success of the lineage. Here, by simulating the evolution of organisms with flexible genomes, we show that the need for an appropriate phenotypic variability induces a relationship between the deleteriousness of gene mutations and the quantity of non-coding sequences maintained in the genome.

View Article and Find Full Text PDF