Publications by authors named "Carole Guillaume"

The gas (O and CO) permeability of an innovative stratified PE-organoclay (LLDPE/OMMT) nano-enabled composite films was studied for the first time and related to the self-assembly process driven by hydrophobic interactions. An 84.4% and a 70% reduction ( a barrier improvement factor of about 6, sufficient for food packaging applications) were observed respectively in the oxygen and carbon dioxide permeability of the 5 bilayers coated film compared to the substrate, while only incorporating 2.

View Article and Find Full Text PDF

The innovative use of gelatin as a temperature sensor based on capacitance was studied at a temperature range normally used for meat cooking (20-80 °C). Interdigital electrodes coated by gelatin solution and two sensors of different thicknesses (38 and 125 µm) were studied between 300 MHz and 900 MHz. At 38 µm, the capacitance was adequately measured, but for 125 µm the slope capacitance versus temperature curve decreased before 900 MHz due to the electrothermal breakdown between 60 °C and 80 °C.

View Article and Find Full Text PDF

Polymers can be classified as synthetic polymers and natural polymers, and are often characterized by their most typical functions namely their high mechanical resistivity, electrical conductivity and dielectric properties. This bibliography report consists in: (i) Defining the origins of the dielectric properties of natural polymers by reviewing proteins. Despite their complex molecular chains, proteins present several points of interest, particularly, their charge content conferring their electrical and dielectric properties; (ii) Identifying factors influencing the dielectric properties of protein films.

View Article and Find Full Text PDF

This data article contains values of oxygen and carbon dioxide solubility and diffusivity measured in various model and real food products. These data are stored in a public repository structured by ontology. These data can be retrieved through the @Web tool, a user-friendly interface to capitalise and query data.

View Article and Find Full Text PDF

We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P.

View Article and Find Full Text PDF

Coupling gas transfer with predictive microbiology is essential to rationally design modified atmosphere packaging (MAP) strategies to ensure and guarantee food safety. Nowadays, these strategies are generally empirically built and over-sized since packaging material with high barrier properties is often chosen by default even if such a high level of protection is not systematically required. Protection strategies could be improved using rational sizing based on quantitative analysis and mathematical modeling of mass transfer.

View Article and Find Full Text PDF

Oxygen and carbon dioxide solubility and diffusivity are 2 key parameters to understand gas transfer in food matrices. Knowledge of these parameters could help to predict gas concentration in modified atmosphere packaging and, consequently, to predict shelf-life of the product through the development of appropriate mathematical models. The aim of this review is to present the existing methodologies to quantify O and CO contents in food, especially in solid food matrices which is very challenging.

View Article and Find Full Text PDF

Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.

View Article and Find Full Text PDF

Formalin is the key agent for tissue fixation and pathological diagnosis. However, it poorly preserves nucleic acids and this can impair molecular studies. An alternative to formalin would be a fixative which can allow both morphologic and molecular analyses.

View Article and Find Full Text PDF

Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes.

View Article and Find Full Text PDF

Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, a homologous but nontoxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity.

View Article and Find Full Text PDF

We previously showed that the in vitro intraerythrocytic development of the malarial agent Plasmodium falciparum is strongly inhibited by secreted phospholipases A(2) (sPLA(2)s) from animal venoms. Inhibition is dependent on enzymatic activity and requires the presence of serum lipoproteins in the parasite culture medium. To evaluate the potential involvement of host lipoproteins and sPLA(2)s in malaria, we investigated the interactions between bee venom phospholipase A(2) (bvPLA(2)), human triglyceride-rich lipoproteins, and infected erythrocytes.

View Article and Find Full Text PDF

Two novel peptides that inhibit the intra-erythrocyte stage of Plasmodium falciparum in vitro were identified in the venom of the Trinidad chevron tarantula, Psalmopoeus cambridgei. Psalmopeotoxin I (PcFK1) is a 33-residue peptide and Psalmopeotoxin II (PcFK2) has 28-amino acid residues; both have three disulfide bridges and belong to the Inhibitor Cystine Knot superfamily. The cDNAs encoding both peptides were cloned, and nucleotide sequence analysis showed that the peptides are synthesized with typical signal peptides and pro-sequences that are cleaved at a basic doublet before secretion of the mature peptides.

View Article and Find Full Text PDF

Antibacterial, antiparasitidal and antiviral properties have recently been attributed to members of the secreted phospholipases A(2) (sPLA(2)s) superfamily. Seven sPLA(2)s from groups IA, IB, IIA and III, were tested here in different culture conditions for inhibition of the in vitro intraerythrocytic development of Plasmodium falciparum, the causative agent of the most severe form of human malaria. In the presence of human serum, all sPLA(2)s were inhibitory, with three out of seven exhibiting IC(50)<0.

View Article and Find Full Text PDF