Publications by authors named "Carole Desmarquet-Trin-Dinh"

From feather and hair dotted arrays to pigmented stripes and spots, the spatial distribution of skin appendages and colouration often forms visible ornaments crucial for fitness in the coat of birds and mammals. These geometrical motifs are extremely diverse in nature. Yet, phenotypic surveys evidenced common themes in variation: the orientation, appendage-specificity or pigmentation of a given region may be conserved across groups or species.

View Article and Find Full Text PDF

The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events.

View Article and Find Full Text PDF

Cis-regulation plays an essential role in the control of gene expression, and is particularly complex and poorly understood for developmental genes, which are subject to multiple levels of modulation. In this study, we performed a global analysis of the cis-acting elements involved in the control of the zebrafish developmental gene krox20. krox20 encodes a transcription factor required for hindbrain segmentation and patterning, a morphogenetic process highly conserved during vertebrate evolution.

View Article and Find Full Text PDF

Although many components of the genetic pathways that provide positional information during embryogenesis have been identified, it remains unclear how these signals are integrated to specify discrete tissue territories. Here, we investigate the molecular mechanisms underlying the formation of one of the hindbrain segments, rhombomere (r) 3, specified by the expression of the gene krox20. Dissecting krox20 transcriptional regulation has identified several input pathways: Hox paralogous 1 (PG1) factors, which both directly activate krox20 and indirectly repress it via Nlz factors, and the molecular components of an Fgf-dependent effector pathway.

View Article and Find Full Text PDF

Although feedback loops are essential in development, their molecular implementation and precise functions remain elusive. Using enhancer knockout in mice, we demonstrate that a direct, positive autoregulatory loop amplifies and maintains the expression of Krox20, a transcription factor governing vertebrate hindbrain segmentation. By combining quantitative data collected in the zebrafish with biophysical modelling that accounts for the intrinsic stochastic molecular dynamics, we dissect the loop at the molecular level.

View Article and Find Full Text PDF

The morphogenesis of the vertebrate hindbrain involves the generation of metameric units called rhombomeres (r), and Krox20 encodes a transcription factor that is expressed in r3 and r5 and plays a major role in this segmentation process. Our knowledge of the basis of Krox20 regulation in r3 is rather confusing, especially concerning the involvement of Hox factors. To investigate this issue, we studied one of the Krox20 hindbrain cis-regulatory sequences, element C, which is active in r3-r5 and which is the only initiator element in r3.

View Article and Find Full Text PDF

The homeodomain transcription factor vHNF1 plays an essential role in the patterning of the caudal segmented hindbrain, where it participates in the definition of the boundary between rhombomeres (r) 4 and 5 and in the specification of the identity of r5 and r6. Understanding the molecular basis of vHnf1 own expression therefore constitutes an important issue to decipher the regulatory network governing hindbrain patterning. We have identified a highly conserved 800-bp enhancer element located in the fourth intron of vHnf1 and whose activity recapitulates vHnf1 neural expression in transgenic mice.

View Article and Find Full Text PDF

Onset of myelination in Schwann cells is governed by several transcription factors, including Krox20/Egr2, and mutations affecting Krox20 result in various human hereditary peripheral neuropathies, including congenital hypomyelinating neuropathy (CHN) and Charcot-Marie-Tooth disease (CMT). Similar molecular information is not available on the process of myelin maintenance. We have generated conditional Krox20 mutations in the mouse that allowed us to develop models for CHN and CMT.

View Article and Find Full Text PDF

Neural crest patterning constitutes an important element in the control of the morphogenesis of craniofacial structures. Krox20, a transcription factor gene that plays a critical role in the development of the segmented hindbrain, is expressed in rhombomeres (r) 3 and 5 and in a stream of neural crest cells migrating from r5 toward the third branchial arch. We have investigated the basis of the specific neural crest expression of Krox20 and identified a cis-acting enhancer element (NCE) located 26 kb upstream of the gene that is conserved between mouse, man and chick and can recapitulate the Krox20 neural crest pattern in transgenic mice.

View Article and Find Full Text PDF

In Schwann cells (SC), myelination is controlled by the transcription factor gene Krox20/Egr2. Analysis of cis-acting elements governing Krox20 expression in SC revealed the existence of two separate elements. The first, designated immature Schwann cell element (ISE), was active in immature but not myelinating SC, whereas the second, designated myelinating Schwann cell element (MSE), was active from the onset of myelination to adulthood in myelinating SC.

View Article and Find Full Text PDF