The stress-induced keratin intermediate filament gene/protein (K16) is spatially restricted to the suprabasal compartment of the epidermis and extensively used as a biomarker for psoriasis, hidradenitis suppurativa, atopic dermatitis and other inflammatory disorders. However, its role in these conditions remains poorly defined. Here we show that K16 negatively regulates type-I interferon (IFN) signaling and innate immune responses.
View Article and Find Full Text PDFNeutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells.
View Article and Find Full Text PDFNeutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin.
View Article and Find Full Text PDFNeutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment.
View Article and Find Full Text PDFTumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-β) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-β on neutrophil signaling and migration are, however, unclear.
View Article and Find Full Text PDFTrends Cell Biol
February 2024
Exosomes are specialized cargo delivery vesicles secreted from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane (PM). While the function of exosomes during physiological and pathological events has been extensively reported, there remains a lack of understanding of the mechanisms that regulate exosome biogenesis, secretion, and internalization. Recent technological and methodological advances now provide details about MVB/exosome structure as well as the pathways of exosome biogenesis, secretion, and uptake.
View Article and Find Full Text PDFTumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-β) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-β on neutrophil signaling and migration are, however, unclear.
View Article and Find Full Text PDFCollective cell migration is critical for proper embryonic development, wound healing, and cancer cell invasion. However, much of our knowledge of cell migration has been performed using flat surfaces that lack topographical features and do not recapitulate the complex fibrous architecture of the extracellular matrix (ECM). The recent availability of synthetic fibrous networks designed to mimic ECM has been key to identify the topological features that dictate cell migration patterns as well as to determine the underlying mechanisms that regulate topography-sensing.
View Article and Find Full Text PDFNeutrophils migrating towards chemoattractant gradients amplify their recruitment range by releasing the secondary chemoattractant leukotriene B (LTB) refs. . We previously demonstrated that LTB and its synthesizing enzymes, 5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and leukotriene A hydrolase, are packaged and released in exosomes.
View Article and Find Full Text PDFG protein–coupled receptors (GPCRs) that couple to the Gα family of G proteins are key regulators of cell and tissue physiology. Our previous work has revealed new roles for Gα in regulating the migration of neutrophils and fibrosarcoma cells downstream of activated chemoattractant receptors. Here, we used an intact cell proximity–based labeling coupled to tandem mass tag (TMT)–based quantitative proteomics analysis to identify proteins that selectively interacted with the GTP-bound form of Gα.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by collagen deposition within the lung interstitium. Bacterial infection is associated with increased morbidity and more rapid mortality in IPF patient populations, and pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) are commonly isolated from the lungs of hospitalized patients with IPF. Despite this, the effects of fibrotic lung injury on critical immune responses to infection remain unknown.
View Article and Find Full Text PDFNeutrophils sense and migrate towards chemotactic factors released at sites of infection/inflammation and contain the affected area using a variety of effector mechanisms. Aside from these established immune defense functions, neutrophils are emerging as one of the key tumor-infiltrating immune cells that influence cancer progression and metastasis. Neutrophil recruitment to the tumor microenvironment (TME) is mediated by multiple mediators including cytokines, chemokines, lipids, and growth factors that are secreted from cancer cells and cancer-associated stromal cells.
View Article and Find Full Text PDFLeukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies, which, upon stimulation, release their content as exosomes.
View Article and Find Full Text PDFCells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate).
View Article and Find Full Text PDFTumor associated neutrophils (TANs) are frequently detected in triple-negative breast cancer (TNBC). Recent studies also reveal the importance of neutrophils in promoting tumor progression and metastasis during breast cancer. However, the mechanisms regulating neutrophil trafficking to breast tumors are less clear.
View Article and Find Full Text PDFCell migration is essential for the development and maintenance of multicellular organisms, contributing to embryogenesis, wound healing, immune response, and other critical processes. It is also involved in the pathogenesis of many diseases, including immune deficiency disorders and cancer metastasis. Recently, extracellular vesicles (EVs) have been shown to play important roles in cell migration.
View Article and Find Full Text PDFThe eicosanoid leukotriene B4 (LTB4) relays chemotactic signals to direct neutrophil migration to inflamed sites through its receptor BLT1. However, the mechanisms by which the LTB4-BLT1 axis relays chemotactic signals during intravascular neutrophil response to inflammation remain unclear. Here, we report that LTB4 produced by neutrophils acts as an autocrine/paracrine signal to direct the vascular recruitment, arrest, and extravasation of neutrophils in a sterile inflammation model in the mouse footpad.
View Article and Find Full Text PDFMitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from null mouse skin, a model for pachyonychia congenita (PC)-associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria.
View Article and Find Full Text PDFCurr Opin Cell Biol
February 2020
The nucleus houses and protects genomic DNA, which is surrounded by the nuclear envelope. Owing to its size and stiffness, the nucleus is often a barrier to migration through confined spaces. Neutrophils are terminally differentiated, short-lived cells that migrate through tissues in response to injury and infections.
View Article and Find Full Text PDFMigration is a vital, intricate, and multi-faceted process that involves the entire cell, entails the integration of multiple external cues and, at times, necessitates high-level coordination among fields of cells that can be physically attached or not, depending on the physiological setting. Recent advances have highlighted the essential role of cellular components that have not been traditionally considered when studying cell migration. This review details how much we recently learned by studying the role of intermediate filaments, the nucleus, extracellular vesicles, and mitochondria during cell migration.
View Article and Find Full Text PDFPhysical guidance from the underlying matrix is a key regulator of cancer invasion and metastasis. We explore the effects of surface topography on the migration phenotype of multiple breast cancer cell lines using aligned nanoscale ridges and asymmetric sawtooth structures. Both benign and metastatic breast cancer cells preferentially move parallel to nanoridges, with enhanced speeds compared to flat surfaces.
View Article and Find Full Text PDFNeutrophils are the most common leukocyte in human blood and are the first cells to respond to injury and infection. Improper neutrophil chemotaxis can have deleterious effects on human health, including autoimmune diseases, poor innate immune response, and cancer. Therefore, gaining a better understanding of the signaling pathways governing chemotactic responses in these cells is important.
View Article and Find Full Text PDF