Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications.
View Article and Find Full Text PDFMotoneurons (MN) as well as most neuronal populations undergo a temporally and spatially specific period of programmed cell death (PCD). Several factors have been considered to regulate the survival of MNs during this period, including availability of muscle-derived trophic support and activity. The possibility that target-derived factors may also negatively regulate MN survival has been considered, but not pursued.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder that results in the progressive loss of motoneurons (MNs) in the CNS. Several survival and death mechanisms of MNs have been characterized and it has been determined that MNs do not appear to mount a complete stress response, as determined by the lack of heat shock protein 70 (Hsp70) upregulation after several stress paradigms. Hsp70 has been shown to confer neuroprotection and the insufficient availability of Hsp70 may contribute to MNs' susceptibility to death in ALS mice.
View Article and Find Full Text PDFProper sensing of stress and the initiation of the stress response are critical to maintaining cell viability in response to noxious stimuli. Induction of the stress response prior to the exposure of a lethal stress (preconditioning) can be protective. Heat shock proteins (Hsps), the main products of the stress response, are considered to be responsible for this protective effect.
View Article and Find Full Text PDFThe ability to mount a successful stress response in the face of injury is critical to the long-term viability of individual cells and to the organism in general. The stress response, characterized in part by the upregulation of heat shock proteins, is compromised in several neurodegenerative disorders and in some neuronal populations, including motoneurons (MNs). Because astrocytes have a greater capacity than neurons to survive metabolic stress, and because they are intimately associated with the regulation of neuronal function, it is important to understand their stress response, so that we may to better appreciate the impact of stress on neuronal viability during injury or disease.
View Article and Find Full Text PDFDuring development, motoneurons (MNs) undergo a highly stereotyped, temporally and spatially defined period of programmed cell death (PCD), the result of which is the loss of 40-50% of the original neuronal population. Those MNs that survive are thought to reflect the successful acquisition of limiting amounts of trophic factors from the target. In contrast, maturation of MNs limits the need for target-derived trophic factors, because axotomy of these neurons in adulthood results in minimal neuronal loss.
View Article and Find Full Text PDFThe clarification of mechanisms of developmental cell death may provide hints in the prevention of pathological neuronal death. The execution phase of cell death has been extensively characterized; however, events that occur prior to this phase are less well understood. Previous studies have suggested that terminally differentiated neurons induced to die in various experimental paradigms may be making an abortive attempt to reenter the cell cycle.
View Article and Find Full Text PDFMotoneurons (MNs) in the cervical spinal cord of the chicken embryo undergo programmed cell death (PCD) between embryonic day (E) 4 and E5. The intracellular molecules regulating this early phase of PCD remain unknown. Here we show that introduction of Bcl-2 by a replication-competent avian retroviral vector prevented MN degeneration at E4.
View Article and Find Full Text PDF