Photoreceptor oil droplets (ODs) are spherical organelles placed most commonly within the inner segment of the cone photoreceptors. Comprising neutral lipids, ODs can be either non-pigmented or pigmented and have been considered optically functional in various studies. Among living amphibians, ODs were only reported to occur in frogs and toads (Anura), while they are absent in salamanders and caecilians.
View Article and Find Full Text PDFTurbidity challenges the visual performance of aquatic animals. Here, we use the natural diversity of ephemeral rearing sites occupied by tadpoles of two poison frog species to explore the relationship between environments with limited visibility and individual response to perceived risk. To compare how species with diverse natural histories respond to risk after developing in a range of photic environments, we sampled wild tadpoles of (1) Dendrobates tinctorius, a rearing-site generalist with facultatively cannibalistic tadpoles and (2) Oophaga pumilio, a small-pool specialist dependent on maternal food-provisioning.
View Article and Find Full Text PDFSnakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes.
View Article and Find Full Text PDFFrom the mid-19th century until the 1980's, frogs and toads provided important research models for many fundamental questions in visual neuroscience. In the present century, they have been largely neglected. Yet they are animals with highly developed vision, a complex retina built on the basic vertebrate plan, an accessible brain, and an experimentally useful behavioural repertoire.
View Article and Find Full Text PDFThe amount of short wavelength (ultraviolet (UV), violet and blue) light that reaches the retina depends on the transmittance properties of the ocular media, especially the lens, and varies greatly across species in all vertebrate groups studied previously. We measured the lens transmittance in 32 anuran amphibians with different habits, geographical distributions and phylogenetic positions and used them together with eye size and pupil shape to evaluate the relationship with diel activity pattern, elevation and latitude. We found an unusually high lens UV transmittance in the most basal species, and a cut-off range that extends into the visible spectrum for the rest of the sample, with lenses even absorbing violet light in some diurnal species.
View Article and Find Full Text PDFBackground: Lizards are excellent models to study the adaptations of the visual system to different scenarios, and surface-dwelling representatives have been relatively well studied. In contrast, very little is known about the functional anatomy of the eyes of fossorial lineages, and properties such as the light transmission by the ocular media have never been characterised in any fossorial species. Some lizards in the family Gymnophthalmidae endemic to the sand dunes of North Eastern Brazil have evolved sand-burrowing habits and nocturnal activity.
View Article and Find Full Text PDFThe transmittance properties of the cornea, lens and humours of vertebrates determine how much light across the visible spectrum reaches the retina, influencing sensitivity to visual stimuli. Amphibians are the only vertebrate class in which the light transmittance of these ocular media has not been thoroughly characterised, preventing large-scale comparative studies and precise quantification of visual stimuli in physiological and behavioural experiments. We measured the ocular media transmittance in some commonly used species of amphibians (the bufonids and , and the ranids and ) and found low transmittance of short wavelength light, with ranids having less transmissive ocular media than bufonids.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2017
The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads () and frogs () to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2017
Colour discrimination is based on opponent photoreceptor interactions, and limited by receptor noise. In dim light, photon shot noise impairs colour vision, and in vertebrates, the absolute threshold of colour vision is set by dark noise in cones. Nocturnal insects (e.
View Article and Find Full Text PDFThe vertebrate olfactory system has fascinated neurobiologists over the last six decades because of its ability to replace its neurons and synaptic connections continuously throughout adult life, under both physiological and pathological conditions. Among the factors that are proposed to be involved in this regenerative potential, brain-derived neurotrophic factor (BDNF) is a candidate for having an important role in the neuronal turnover in the olfactory epithelium (OE) because of its well-documented neurogenic and trophic effects throughout the nervous system. The aim of the present study was to generate a suitable model to study the participation of BDNF in the recovery of the OE after injury in vivo.
View Article and Find Full Text PDFObjective: To investigate the effects of selective cyclooxygenase-2 (COX-2) inhibition on the ovarian hyperstimulation syndrome (OHSS) in an experimental model.
Design: Controlled laboratory study.
Setting: University-affiliated fertility center.
In the last years several studies have shown that vascular endothelial growth factor (VEGF) is present in neural stem cells and mature neurons from different neural tissues where it may play an important role as a neuroproliferative and/or antiapoptotic factor. The olfactory neuroepithelium has the capability to replace dying neurons with new neurons formed by cell division from stem cells in the basal region of the epithelium. The present study demonstrates, for the first time, that VEGF is present in the olfactory epithelium, nerves and bulbs (both main and accessory) during the development of the toad Bufo arenarum.
View Article and Find Full Text PDF