Single layers of covalently linked organic materials in the form of two-dimensional (2D) polymers constitute structures complementary to inorganic 2D materials. The electronic properties of 2D polymers may be manipulated through a deliberate choice of the organic precursors. Here we address the changes in electronic structure-from precursor molecule to oligomer-by scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy.
View Article and Find Full Text PDFMaterials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane.
View Article and Find Full Text PDFScanning probe microscope (SPM) experiments demand a low vibration level to minimize the external influence on the measured signal. We present a miniature six-degree of freedom active damping stage based on a Gough-Stewart platform (hexapod) which is positioned in ultra high vacuum as close to the SPM as possible. In this way, vibrations originating from the experimental setup can be effectively reduced providing a quiet environment for the SPM.
View Article and Find Full Text PDF