Publications by authors named "Carola Stockburger"

Background: Silexan, a special essential oil from flowering tops of lavandula angustifolia, is used to treat subsyndromal anxiety disorders. In a recent clinical trial, Silexan also showed antidepressant effects in patients suffering from mixed anxiety-depression (ICD-10 F41.2).

View Article and Find Full Text PDF

Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how cellular metabolism, especially mitochondrial function, plays a crucial role in the development of neurons from neural stem cells in the hippocampus, particularly focusing on the stage of rapidly dividing progenitor cells.
  • Disruption of mitochondrial function due to loss of a specific transcription factor leads to age-related issues in neurogenesis, mimicking signs of aging in brain function.
  • Enhancing mitochondrial function appears to counteract these age-related deficiencies, suggesting that targeting mitochondrial health could help improve neurogenesis in older adults.
View Article and Find Full Text PDF

The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity.

View Article and Find Full Text PDF

Aberrant neuronal network activity associated with neuronal hyperexcitability seems to be an important cause of cognitive decline in aging and Alzheimer's disease (AD). Out of many antiepileptics, only levetiracetam improved cognitive dysfunction in AD patients and AD animal models by reducing hyperexcitability. As impaired inhibitory interneuronal function, rather than overactive neurons, seems to be the underlying cause, improving impaired neuronal function rather than quieting overactive neurons might be relevant in explaining the lack of activity of the other antiepileptics.

View Article and Find Full Text PDF

The etiology of common, nonfamiliar late-onset Alzheimer's disease (LOAD) is only partly understood and seems to be extremely complex including many genetic and environmental factors. The most important environmental risk factor to develop LOAD is aging itself. Aging and LOAD are considered to be strongly linked to mitochondrial dysfunction and enhanced oxidative stress.

View Article and Find Full Text PDF

Recent data suggest that the combined effect of oxidative stress due to aging and slightly elevated amyloid-β (Aβ) levels initiate Alzheimer's disease (AD) long before the clinical onset. Investigations of this early phase are hampered by the lack of cellular or animal models reflecting this scenario. We used SH-SY5Y cells stably transfected with an additional copy of the human AβPP gene and artificial aging by complex I inhibition.

View Article and Find Full Text PDF

The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD.

View Article and Find Full Text PDF