Aim: Biomaterials are often applied in periodontal therapy; however, not always well adapted for tissue regeneration. The objective of this study was to evaluate the physico-chemical properties and biocompatibility of an injectable, in situ setting composite for growth factor-enhanced periodontal regeneration.
Material And Methods: The composite constitutes bioresorbable poly(lactic-co-glycolic acid) (PLGA) and additives forming in situ a matrix designed as a carrier for recombinant human growth/differentiation factor-5 (rhGDF-5).
Background: MD05 consists of beta-tricalcium phosphate (beta-TCP) coated with recombinant human growth/differentiation factor-5 (rhGDF-5) and is under evaluation as an osteoinductive and osteoconductive bone graft material for use in dental and maxillofacial applications. The objective of this study was to compare the bone regenerative properties of MD05 with those of conventional commercially available bone substitutes.
Methods: Full-thickness, 6-mm diameter, calvarial critical-size defects (two per animal) were created in adult Sprague-Dawley rats.
We examined the molecular progression of ectopic bone development upon application of recombinant human bone morphogenetic protein-2 (rhBMP2), using a commercial collagen type I carrier, in the hind quarter muscles of mice. We performed a gene expression study using mRNA in situ hybridisation to compare embryonic cartilage and bone formation with BMP2-induced ectopic bone formation. As bone growth can be induced postnatally or in adult animals, we examined the expression of molecules regulating embryonic bone development.
View Article and Find Full Text PDF