Pulmonary drug delivery is a form of local targeting to the lungs in patients with respiratory disorders like cystic fibrosis, pulmonary arterial hypertension (PAH), asthma, chronic pulmonary infections, and lung cancer. In addition, noninvasive pulmonary delivery also presents an attractive alternative to systemically administered therapeutics, not only for localized respiratory disorders but also for systemic absorption. Pulmonary delivery offers the advantages of a relatively low dose, low incidence of systemic side effects, and rapid onset of action for some drugs compared to other systemic administration routes.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is a global concern as one of the leading causes of cancer deaths. The treatment options for NSCLC are limited to systemic chemotherapy, administered either orally or intravenously, with no local chemotherapies to target NSCLC. In this study, we have prepared nanoemulsions of tyrosine kinase inhibitor (TKI), erlotinib, using the single step, continuous manufacturing, and easily scalable hot melt extrusion (HME) technique without additional size reduction step.
View Article and Find Full Text PDFRasagiline mesylate (RM) is a monoamine oxidase inhibitor that is commonly used to alleviate the symptoms of Parkinson's disease. However, it suffers from low oral bioavailability due to its extensive hepatic metabolism in addition to its hydrophilic nature which limits its ability to pass through the blood-brain barrier (BBB) and reach the central nervous system where it exerts its pharmacological effect. Thus, this study aims to form RM-loaded spanlastic vesicles for intranasal (IN) administration to overcome its hepatic metabolism and permit its direct delivery to the brain.
View Article and Find Full Text PDFIntroduction: Damage to human skin occurs either chronologically or through repetitive exposure to ultraviolet (UV) radiation, where collagen photodegradation leads to the formation of wrinkles and skin imperfections. Consequently, cosmeceutical products containing natural bioactives to restore or regenerate collagen have gained a remarkable attention as an ameliorative remedy.
Methods: This study aimed to develop and optimize collagen-loaded water-in-oil nanoemulsion (W/O NE) through a D-optimal mixture design to achieve an ideal multifunctional nanosystem containing active constituents.
Diabetes mellitus is a challenging health problem. Salivary gland dysfunction is one of its complications. Current treatments possess numerous adverse effects.
View Article and Find Full Text PDFIn this investigation, we focused on ceramide IIIB, a skin component whose depletion tends to augment multiple skin disorders and fungal infections. Ceramide IIIB was included into PEGylated surfactant-based vesicular phospholipid system to formulate 'PEGylated cerosomes' (PCs) loaded with fenticonazole nitrate (FTN). FTN is a potent antifungal agent adopted in the treatment of mixed mycotic and bacterial infections.
View Article and Find Full Text PDFPurpose: Zein/phospholipid composite nanoparticles (CNPs) were developed as a delivery platform for gallic acid (GA), a polyphenolic compound with reported preclinical antifibrotic activities. However, the therapeutic applicability of GA is hampered owing to its low bioavailability and rapid clearance. Accordingly, we developed GA-loaded CNPs.
View Article and Find Full Text PDFPurpose: Gallic acid (GA) is a polyphenolic compound with proven efficacy against hepatic fibrosis in experimental animals. However, it suffers from poor bioavailability and rapid clearance that hinders its clinical investigation. Accordingly, we designed and optimized reverse micelle-loaded lipid nanocapsules (RMLNC) using Box-Behnken design that can deliver GA directly into activated-hepatic stellate cells (aHSCs) aiming to suppress hepatic fibrosis progression.
View Article and Find Full Text PDFEye drops' formulations of poorly water-soluble drugs, offer the advantage of crossing the lipophilic cornea, but their limited aqueous solubility may lead to low ocular bioavailability limiting their therapeutic uses. Terconazole (TZ) is an antifungal drug with low aqueous solubility, restricting its application in ocular fungal infection. Thus, the aim of the work in this study is to enhance TZ solubilization, permitting better ocular permeation and higher bioavailability.
View Article and Find Full Text PDFOcular drug administration is usually problematic and suffers low bioavailability due to several physiological and biological factors that hinder their effective treatment. Terconazole (TZ) is considered as one of the effective ocular antifungal agents that is usually administrated intravitreally for higher efficacy. The aim of the work in this study is to formulate a TZ-loaded ocular drug delivery system with high efficiency and good tolerability.
View Article and Find Full Text PDFIn this work, ultrahigh drug-loaded chitosan (Ch)/K-carrageenan (Kc) polyelectrolyte complex (PEC) beads were formed in situ by cross-linking in a glutaraldehyde-saturated atmosphere and were prepared on superhydrophobic substrates fabricated by spraying glass surfaces with ready-made spray for domestic use (NeverWet). Verapamil hydrochloride (VP), a highly hydrophilic drug with a short biological half-life, was incorporated into a series of Ch-based and/or Ch/Kc-PEC-based beads to control its release profile in vivo. The formulation of VP-loaded beads was optimized using stepwise statistical designs based on a prespecified criterion.
View Article and Find Full Text PDFControlled-release multiparticulate systems of hydrophilic drugs usually suffer from poor encapsulation and rapid-release rate. In the present study, ultra-high loaded controlled release polymeric beads containing verapamil hydrochloride (VP) as hydrophilic model drug were efficiently prepared using superamphiphobic substrates aiming to improve patient compliance by reducing dosing frequency. Superamphiphobic substrates were fabricated using clean aluminum sheets etched with ammonia solution and were treated with 1.
View Article and Find Full Text PDFOcular topically applied Vancomycin (VCM) suffers poor bioavailability due to its high molecular weight and hydrophilicity. In the present investigation, VCM-loaded polymeric nanoparticles (PNPs) were developed aiming to enhance its ocular bioavailability through prolonging its release pattern and ophthalmic residence. PNPs were prepared utilizing double emulsion (W/O/O), solvent evaporation technique.
View Article and Find Full Text PDFContext: A microbiological multidistrict-based survey from different Egyptian governorates was conducted to determine the most prevalent causative agents of ocular infections in the Egyptian population. Antibiotic sensitivity testing was then performed to identify the most potent antimicrobial agent. Vancomycin (VCM) proved the highest activity against gram-positive Staphylococcus bacteria, which are the most commonly isolated causative agents of ocular infection.
View Article and Find Full Text PDF