Publications by authors named "Carol Wu"

Using Deep Learning in computer-aided diagnosis systems has been of great interest due to its impressive performance in the general domain and medical domain. However, a notable challenge is the lack of explainability of many advanced models, which poses risks in critical applications such as diagnosing findings in CXR. To address this problem, we propose ItpCtrl-AI, a novel end-to-end interpretable and controllable framework that mirrors the decision-making process of the radiologist.

View Article and Find Full Text PDF

In the rapidly evolving landscape of medical imaging, the integration of artificial intelligence (AI) with clinical expertise offers unprecedented opportunities to enhance diagnostic precision and accuracy. Yet, the "black box" nature of AI models often limits their integration into clinical practice, where transparency and interpretability are important. This paper presents a novel system leveraging the Large Multimodal Model (LMM) to bridge the gap between AI predictions and the cognitive processes of radiologists.

View Article and Find Full Text PDF

Radiation recall pneumonitis is an inflammatory reaction of previously radiated lung parenchyma triggered by systemic pharmacological agents (such as chemotherapy and immunotherapy) or vaccination. Patients present with non-specific symptoms such as cough, shortness of breath, or hypoxia soon after the initiation of medication or vaccination. Careful assessment of the patient's history, including the thoracic radiation treatment plan and timing of the initiation of the triggering agent, in conjunction with CT findings, contribute to the diagnosis.

View Article and Find Full Text PDF

Chest radiography is one of the most commonly performed imaging tests, and benefits include accessibility, speed, cost, and relatively low radiation exposure. Lung cancer is the third most common cancer in the United States and is responsible for the most cancer deaths. Knowledge of the role of chest radiography in assessing patients with lung cancer is important.

View Article and Find Full Text PDF

The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval.

View Article and Find Full Text PDF

Objective: Lung cancers that present as radiographic subsolid nodules represent a subtype with distinct biological behavior and outcomes. The objective of this document is to review the existing literature and report consensus among a group of multidisciplinary experts, providing specific recommendations for the clinical management of subsolid nodules.

Methods: The American Association for Thoracic Surgery Clinical Practice Standards Committee assembled an international, multidisciplinary expert panel composed of radiologists, pulmonologists, and thoracic surgeons with established expertise in the management of subsolid nodules.

View Article and Find Full Text PDF

Background Generating radiologic findings from chest radiographs is pivotal in medical image analysis. The emergence of OpenAI's generative pretrained transformer, GPT-4 with vision (GPT-4V), has opened new perspectives on the potential for automated image-text pair generation. However, the application of GPT-4V to real-world chest radiography is yet to be thoroughly examined.

View Article and Find Full Text PDF

While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume.

View Article and Find Full Text PDF

[F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478).

View Article and Find Full Text PDF

The American College of Radiology created the Lung CT Screening Reporting and Data System (Lung-RADS) in 2014 to standardize the reporting and management of screen-detected pulmonary nodules. Lung-RADS was updated to version 1.1 in 2019 and revised size thresholds for nonsolid nodules, added classification criteria for perifissural nodules, and allowed for short-interval follow-up of rapidly enlarging nodules that may be infectious in etiology.

View Article and Find Full Text PDF

Incidental pulmonary nodules are common. Although the majority are benign, most are indeterminate for malignancy when first encountered making their management challenging. CT remains the primary imaging modality to first characterize and follow-up incidental lung nodules.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICI) may cause pneumonitis, resulting in potentially fatal lung inflammation. However, distinguishing pneumonitis from pneumonia is time-consuming and challenging. To fill this gap, we build an image-based tool, and further evaluate it clinically alongside relevant blood biomarkers.

View Article and Find Full Text PDF

The ACR created the Lung CT Screening Reporting and Data System (Lung-RADS) in 2014 to standardize the reporting and management of screen-detected pulmonary nodules. Lung-RADS was updated to version 1.1 in 2019 and revised size thresholds for nonsolid nodules, added classification criteria for perifissural nodules, and allowed for short-interval follow-up of rapidly enlarging nodules that may be infectious in etiology.

View Article and Find Full Text PDF

Purpose: Therapy for cancer-associated venous thromboembolism (VTE) includes long-term anticoagulation, which may have substantial impact on the health-related quality of life (HRQL) of patients. We assessed patient-reported outcomes to characterize the HRQL associated with VTE treatment and to begin to examine those HRQL elements impacting anticoagulation adherence (AA).

Methods: Participants were adult cancer patients with confirmed symptomatic acute lower extremity deep venous thrombosis.

View Article and Find Full Text PDF

Survival models exist to study relationships between biomarkers and treatment effects. Deep learning-powered survival models supersede the classical Cox proportional hazards (CoxPH) model, but substantial performance drops were observed on high-dimensional features because of irrelevant/redundant information. To fill this gap, we proposed SwarmDeepSurv by integrating swarm intelligence algorithms with the deep survival model.

View Article and Find Full Text PDF
Article Synopsis
  • Survivors of SARS-CoV-2 pneumonia, particularly cancer patients, often experience lasting respiratory symptoms and interstitial lung abnormalities (ILAs) following their infection, but the risk factors for these conditions are not well understood.
  • In a study of 140 patients from cancer centers, around 70% of participants had ILAs just 3 months after hospital discharge, with a notable percentage still experiencing symptoms at 6 months.
  • Higher pneumonia severity scores at hospital admission were linked to a greater likelihood of developing persistent ILAs, suggesting that both the severity of initial illness and age can influence respiratory recovery in these patients.
View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate the dosimetric and clinical effects of 4-dimensional computed tomography (4DCT)-based longitudinal dose accumulation in patients with locally advanced non-small cell lung cancer treated with standard-fractionated intensity-modulated radiation therapy (IMRT).

Methods And Materials: Sixty-seven patients were retrospectively selected from a randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ∼4-month posttreatment follow-up CTs were imported into a commercial treatment planning system.

View Article and Find Full Text PDF

Background: Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context.

View Article and Find Full Text PDF

The role of combination chemotherapy with immune checkpoint inhibitors (ICI) (ICI-chemo) over ICI monotherapy (ICI-mono) in non-small cell lung cancer (NSCLC) remains underexplored. In this retrospective study of 1133 NSCLC patients, treatment with ICI-mono vs ICI-chemo associate with higher rates of early progression, but similar long-term progression-free and overall survival. Sequential vs concurrent ICI and chemotherapy have similar long-term survival, suggesting no synergism from combination therapy.

View Article and Find Full Text PDF

Objectives: Cancer patients have worse outcomes from the COVID-19 infection and greater need for ventilator support and elevated mortality rates than the general population. However, previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis and severity prediction models. Little is known about how the AI models perform in cancer patients.

View Article and Find Full Text PDF

Purpose: The US Preventive Services Task Force has recommended lung cancer screening (LCS) with low-dose CT (LDCT) in high-risk individuals since 2013. Because LDCT encompasses the lower neck, chest, and upper abdomen, many incidental findings (IFs) are detected. The authors created a quick reference guide to describe common IFs in LCS to assist LCS program navigators and ordering providers in managing the care continuum in LCS.

View Article and Find Full Text PDF

Pulmonary embolism (PE) remains a common and important clinical condition that cannot be accurately diagnosed on the basis of signs, symptoms, and history alone. The diagnosis of PE has been facilitated by technical advancements and multidetector CT pulmonary angiography, which is the major diagnostic modality currently used. Ventilation and perfusion scans remain largely accurate and useful in certain settings.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm5s9shl3t253t7epa3343eq3md1d81ff): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once