Publications by authors named "Carol W Buettger"

Hepatic glucose phosphorylation by GK (glucokinase) is regulated by GKRP (GK regulatory protein). GKRP forms a cytosolic complex with GK followed by nuclear import and storage, leading to inhibition of GK activity. This process is initiated by low glucose, but reversed nutritionally by high glucose and fructose or pharmacologically by GKAs (GK activators) and GKRPIs (GKRP inhibitors).

View Article and Find Full Text PDF

It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison.

View Article and Find Full Text PDF

Fuel stimulation of insulin secretion from pancreatic beta-cells is thought to be mediated by metabolic coupling factors that are generated by energized mitochondria, including protons, adenine nucleotides, and perhaps certain amino acids (AA), as for instance aspartate, glutamate, or glutamine (Q). The goal of the present study was to evaluate the role of such factors when insulin release (IR) is stimulated by glucose or AA, alone or combined, using (31)P, (23)Na and (1)H NMR technology, respirometry, and biochemical analysis to study the metabolic events that occur in continuously superfused mouse beta-HC9 cells contained in agarose beads and enhanced by the phosphodiesterase inhibitor IBMX. Exposing beta-HC9 cells to high glucose or 3.

View Article and Find Full Text PDF

Neural and endocrine factors (i.e., Ach and GLP-1) restore defective glucose-stimulated insulin release in pancreatic islets lacking sulfonylurea type 1 receptors (SUR1(-/-)) (Doliba NM, Qin W, Vatamaniuk MZ, Li C, Zelent D, Najafi H, Buettger CW, Collins HW, Carr RD, Magnuson MA, and Matschinsky FM.

View Article and Find Full Text PDF

Inhibition of ATP-sensitive K+ (K(ATP)) channels by an increase in the ATP/ADP ratio and the resultant membrane depolarization are considered essential in the process leading to insulin release (IR) from pancreatic beta-cells stimulated by glucose. It is therefore surprising that mice lacking the sulfonylurea type 1 receptor (SUR1-/-) in beta-cells remain euglycemic even though the knockout is expected to cause hypoglycemia. To complicate matters, isolated islets of SUR1-/- mice secrete little insulin in response to high glucose, which extrapolates to hyperglycemia in the intact animal.

View Article and Find Full Text PDF

In the present study, noninvasive (31)P and (23)Na(+)-nuclear magnetic resonance (NMR) technology and respirometry were used to compare the effect of high glucose (30 mmol/l) with the effect of the antidiabetic sulfonylurea (SU) compound glyburide (GLY) on energy metabolism, Na(+) flux, insulin, and cAMP release of continuously superfused beta-HC9 cells encapsulated in microscopic agarose beads. Both high glucose and GLY increased oxygen consumption in beta-HC9 cells (15-30%) with a maximal effect at 8 mmol/l for glucose and at 250 nmol/l for GLY. At the same time, insulin release from beta-cells increased by 15- and 25-fold with high glucose or GLY, respectively.

View Article and Find Full Text PDF