Publications by authors named "Carol Vinton"

Variations in the composition of the intestinal bacterial microbiome correlate with acquisition of some sexually transmitted pathogens. To experimentally assess the contribution of intestinal dysbiosis to rectal lentiviral acquisition, we induce dysbiosis in rhesus macaques (RMs) with the antibiotic vancomycin prior to repeated low-dose intrarectal challenge with simian immunodeficiency virus (SIV) SIVmac239X. Vancomycin administration reduces T helper 17 (T17) and T22 frequencies, increases expression of host bacterial sensors and antibacterial peptides, and increases numbers of transmitted-founder (T/F) variants detected upon SIV acquisition.

View Article and Find Full Text PDF

Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial translocation happens when the gut barrier is compromised, allowing microbial components to enter the bloodstream and trigger immune responses, which can lead to chronic inflammation and worsen various diseases.
  • Identifying reliable biomarkers for microbial translocation is important but challenging due to the limitations in detection methods and the influence of other biological factors.
  • In studies involving HIV patients and SIV-infected macaques, certain proteins linked to cellular stress were not found to correlate with elevated microbial translocation biomarkers, indicating that inflammation from cell death doesn't affect these biomarker levels.
View Article and Find Full Text PDF

Simian immunodeficiency virus (SIV)-infected nonhuman primates can serve as a relevant model for AIDS neuropathogenesis. Current SIV-induced encephalitis (SIVE)/neurological complications of AIDS (neuroAIDS) models are generally associated with rapid progression to neuroAIDS, which does not reflect the tempo of neuroAIDS progression in humans. Recently, we isolated a neuropathogenic clone, SIVsm804E-CL757 (CL757), obtained from an SIV-infected rhesus macaque (RM).

View Article and Find Full Text PDF

Human immunodeficiency virus 1 (HIV-1) infection is associated with heightened inflammation and excess risk of cardiovascular disease, cancer and other complications. These pathologies persist despite antiretroviral therapy. In two independent cohorts, we found that innate lymphoid cells (ILCs) were depleted in the blood and gut of people with HIV-1, even with effective antiretroviral therapy.

View Article and Find Full Text PDF

Flaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates.

View Article and Find Full Text PDF
Article Synopsis
  • CD8+ T cell responses are crucial for controlling the simian immunodeficiency virus (SIV), but factors influencing their antiviral effectiveness are not fully understood, particularly due to previous research mainly focusing on circulating CD8+ T cells.
  • A study analyzed SIV-specific CD8+ T cells from various anatomical locations in rhesus macaques with differing viral loads, revealing no major differences in response magnitude between the groups.
  • Rhesus macaques with lower viral loads exhibited a higher frequency of functional CD8+ T cells in lymphoid tissues and a greater diversity of Gag-specific T cell clonotypes in mesenteric lymph nodes, indicating that the functionality and localization of these cells are key to their effectiveness against SIV.
View Article and Find Full Text PDF

Among the numerous immunological abnormalities observed in chronically human immunodeficiency virus (HIV)-infected individuals, perturbations in memory CD4 T cells are thought to contribute specifically to disease pathogenesis. Among these, functional imbalances in the frequencies of T regulatory cells (Tregs) and interleukin 17 (IL-17)/IL-22-producing Th cells (Th17/Th22) from mucosal sites and T follicular helper (Tfh) cells in lymph nodes are thought to facilitate specific aspects of disease pathogenesis. However, while preferential infection of Tfh cells is widely thought to create an important viral reservoir in an immunologically privileged site , whether immunological perturbations among memory CD4 T cell populations are attributable to their relative infectivity by the virus is unclear.

View Article and Find Full Text PDF

Intestinal microbial dysbiosis has been described in individuals with an HIV-1 infection and may underlie persistent inflammation in chronic infection, thereby contributing to disease progression. Herein, we induced an HIV-1-like intestinal dysbiosis in rhesus macaques (Macaca mulatta) with vancomycin treatment and assessed the contribution of dysbiosis to SIV disease progression. Dysbiotic and control animals had similar disease progression, indicating that intestinal microbial dysbiosis similar to that observed in individuals with HIV is not sufficient to accelerate untreated lentiviral disease progression.

View Article and Find Full Text PDF

African green monkeys (AGMs) are a natural host of SIV that do not develop simian AIDS. Adult AGMs naturally have low numbers of CD4 T cells and a large population of MHC class II-restricted CD8αα T cells that are generated through CD4 downregulation in CD4 T cells. In this article, we study the functional profiles and SIV infection status in vivo of CD4 T cells, CD8αα T cells, and CD8αβ T cells in lymph nodes, peripheral blood, and bronchoalveolar lavage fluid of AGMs and rhesus macaques (in which CD4 downregulation is not observed).

View Article and Find Full Text PDF

Unlabelled: Mucosa-associated invariant T (MAIT) cells contribute to host immune protection against a wide range of potential pathogens via the recognition of bacterial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although bacterial products translocate systemically in human immunodeficiency virus (HIV)-infected individuals and simian immunodeficiency virus (SIV)-infected Asian macaques, several studies have shown that MAIT cell frequencies actually decrease in peripheral blood during the course of HIV/SIV disease. However, the mechanisms underlying this proportional decline remain unclear.

View Article and Find Full Text PDF

The viral accessory protein Vpx, expressed by certain simian and human immunodeficiency viruses (SIVs and HIVs), is thought to improve viral infectivity of myeloid cells. We infected 35 Asian macaques and African green monkeys with viruses that do or do not express Vpx and examined viral targeting of cells in vivo. While lack of Vpx expression affected viral dynamics in vivo, with decreased viral loads and infection of CD4⁺ T cells, Vpx expression had no detectable effect on infectivity of myeloid cells.

View Article and Find Full Text PDF

Unlabelled: African green monkeys (AGMs; genus Chlorocebus) are a natural host of simian immunodeficiency virus (SIVAGM). As they do not develop simian AIDS, there is great interest in understanding how this species has evolved to avoid immunodeficiency. Adult African green monkeys naturally have low numbers of CD4 T cells and a large population of major histocompatibility complex class II-restricted CD8α(dim) T cells that are generated through CD4 downregulation in CD4(+) T cells.

View Article and Find Full Text PDF

During HIV/SIV infection, mucosal immune system dysfunction and systemic immune activation are associated with progression to AIDS; however, it is unclear to what extent pre-existing gastrointestinal damage relates to disease progression postinfection. Pigtail macaques (PTM) are an excellent model in which to assess mucosal dysfunction in relation to HIV/SIV pathogenesis, as the majority of these animals have high levels of gastrointestinal damage, immune activation, and microbial translocation prior to infection, and rapidly progress to AIDS upon SIV infection. In this study, we characterized the mucosal immune environment prior to and throughout SIV infection in 13 uninfected PTM and 9 SIV-infected PTM, of which 3 were slow progressors.

View Article and Find Full Text PDF

HIV infection results in gastrointestinal (GI) tract damage, microbial translocation, and immune activation, which are not completely ameliorated with suppression of viremia by antiretroviral (ARV) therapy. Furthermore, increased morbidity and mortality of ARV-treated HIV-infected individuals is associated with these dysfunctions. Thus, to enhance GI tract physiology, we treated SIV-infected pigtail macaques with ARVs, probiotics, and prebiotics or with ARVs alone.

View Article and Find Full Text PDF

Nonhuman primate natural hosts for simian immunodeficiency viruses (SIV) develop a nonresolving chronic infection but do not develop AIDS. Mechanisms to explain the nonprogressive nature of SIV infection in natural hosts that underlie maintained high levels of plasma viremia without apparent loss of target cells remain unclear. Here we used comprehensive approaches (ie, FACS sorting, quantitative RT-PCR, immunohistochemistry, and in situ hybridization) to study viral infection within subsets of peripheral blood and lymphoid tissue (LT) CD4(+) T cells in cohorts of chronically SIV-infected rhesus macaques (RMs), HIV-infected humans, and SIVsmm-infected sooty mangabeys (SMs).

View Article and Find Full Text PDF

IL-21 regulates Th17 cell homeostasis, enhances the differentiation of memory B cells and antibody-secreting plasma cells, and promotes the maintenance of CD8(+) T-cell responses. In this study, we investigated the phenotype, function, and frequency of blood and intestinal IL-21-producing cells in nonhuman primates that are hosts of progressive (rhesus macaques [RMs]) and nonprogressive (sooty mangabeys [SMs]) SIV infection. We found that, in both species, memory CD4(+)CD95(+)CCR6(-) T cells are the main IL-21 producers, and that only a small fraction of CD4(+)IL-21(+) T cells produce IL-17.

View Article and Find Full Text PDF

Background: Although human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) affect mitochondrial DNA (mtDNA) content and function, comprehensive evaluations of their effects on mitochondria in muscle, adipose tissue, and blood cells are limited.

Methods: Mitochondrial DNA quantification, mitochondrial genome sequencing, and gene expression analysis were performed on muscle, adipose tissue, and peripheral blood mononuclear cell (PBMC) samples from untreated HIV-positive patients, HIV-positive patients receiving nucleoside reverse transcriptase inhibitor (NRTI)-based ART, and HIV-negative controls.

Results: The adipose tissue mtDNA/nuclear DNA (nDNA) ratio was increased in untreated HIV-infected patients (ratio, 353) and decreased in those receiving ART (ratio, 162) compared with controls (ratio, 255; P < .

View Article and Find Full Text PDF

Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.

View Article and Find Full Text PDF

HIV infection is characterized by immune system dysregulation, including depletion of CD4+ T cells, immune activation, and abnormal B- and T-cell responses. However, the immunologic mechanisms underlying lymphocytic dysfunctionality and whether it is restricted to immune responses against neo antigens, recall antigens, or both is unclear. Here, we immunized SIV-infected and uninfected rhesus macaques to induce immune responses against neo and recall antigens using a Leishmania major polyprotein (MML) vaccine given with poly-ICLC adjuvant.

View Article and Find Full Text PDF

Many species of African nonhuman primates are natural hosts for individual strains of simian immunodeficiency virus (SIV). These infected animals do not, however, develop AIDS. Here we show that multiple species of African nonhuman primate species characteristically have low frequencies of CD4(+) T cells and high frequencies of both T cells that express only the alpha-chain of CD8 and double-negative T cells.

View Article and Find Full Text PDF

Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4(+)CCR5(+) T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4(+) T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4(+) central memory T cells (T(CM) cells).

View Article and Find Full Text PDF

Patas monkeys were not reported to carry species‐specific simian immunodeficiency virus (SIV), but cross‐species transmission of SIVagm to patas monkeys occurred in the wild. We report that patas monkeys share immunophenotypic features with natural hosts of SIV; that is, low levels of CD4+ T cells and low CCR5 expression on CD4+ T cells. In 1 patas monkey with undetectable levels of CD4+ T cells, experimental exposure to SIVagm did not result in infection.

View Article and Find Full Text PDF

T cells that express the γδ T-cell receptor, which recognize microbial or stress-induced antigens, represent a minority of blood T cells but constitute a major proportion of intraepithelial lymphocytes in the gastrointestinal mucosa. As microbial products have been shown to translocate from the gastrointestinal tract into circulation in chronically HIV/Simian immunodeficiency virus (SIV)-infected individuals, we conducted a study of Vδ1 and Vδ2 T-cell frequency, phenotype, and function in blood, spleen, lymph nodes, gastrointestinal mucosa, and bronchoalveolar lavage of uninfected and chronically SIVsmE543-infected rhesus macaques (RMs). We found: (1) SIV-associated inversion of Vδ1/Vδ2 T cells occurs in blood and in several tissues; (2) γδ T cells are not infected by SIV in vivo; (3) the Vδ1/Vδ2 inversion involves expansion of Vδ1 T cells; (4) expanded Vδ1 T cells are phenotypically and functionally different from Vδ1 T cells from uninfected RMs; and (5) the stimulus underlying expansion of Vδ1 T cells appears to be microbial translocation.

View Article and Find Full Text PDF

The massive depletion of gastrointestinal-tract CD4 T cells is a hallmark of the acute phase of HIV infection. In contrast, the depletion of the lower-respiratory-tract mucosal CD4 T cells as measured in bronchoalveolar lavage (BAL) fluid is more moderate and similar to the depletion of CD4 T cells observed in peripheral blood (PB). To understand better the dynamics of disease pathogenesis and the potential for the reconstitution of CD4 T cells in the lung and PB following the administration of effective antiretroviral therapy, we studied cell-associated viral loads, CD4 T-cell frequencies, and phenotypic and functional profiles of antigen-specific CD4 T cells from BAL fluid and blood before and after the initiation of highly active antiretroviral therapy (HAART).

View Article and Find Full Text PDF