Background: EZH2, well-known for its canonical methyltransferase activity in transcriptional repression in many cancers including glioblastoma (GBM), has an understudied non-canonical function critical for sustained tumor growth. Recent GBM consortial efforts reveal complex molecular heterogeneity for which therapeutic vulnerabilities correlated with subtype stratification remain relatively unexplored. Current enzymatic EZH2 inhibitors (EZH2inh) targeting its canonical SET domain show limited efficacy and lack durable response, suggesting that underlying differences in the non-canonical pathway may yield new knowledge.
View Article and Find Full Text PDFBackground: Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype.
Methods: We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells and public clinical datasets to identify key protein kinases implicated in temozolomide resistance.
Glioblastoma (GBM) is the most common primary malignant brain cancer in adults with a dismal prognosis. Temozolomide (TMZ) is the first-in-line chemotherapeutic; however, resistance is frequent and multifactorial. While many molecular and genetic factors have been linked to TMZ resistance, the role of the solid tumor morphology and the tumor microenvironment, particularly the blood-brain barrier (BBB), is unknown.
View Article and Find Full Text PDFCurrent technologies to subtype glioblastoma (GBM), the most lethal brain tumor, require highly invasive brain biopsies. Here, we develop a dedicated analytical platform to achieve direct and multiplexed profiling of circulating RNAs in extracellular vesicles for blood-based GBM characterization. The technology, termed 'enzyme ZIF-8 complexes for regenerative and catalytic digital detection of RNA' (EZ-READ), leverages an RNA-responsive transducer to regeneratively convert and catalytically enhance signals from rare RNA targets.
View Article and Find Full Text PDFThis review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity.
View Article and Find Full Text PDFGlioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties.
View Article and Find Full Text PDFMolecular profiling of the most aggressive brain tumor glioblastoma (GBM) on the basis of gene expression, DNA methylation, and genomic variations advances both cancer research and clinical diagnosis. The enhancer architectures and regulatory circuitries governing tumor-intrinsic transcriptional diversity and subtype identity are still elusive. Here, by mapping H3K27ac deposition, we analyze the active regulatory landscapes across 95 GBM biopsies, 12 normal brain tissues, and 38 cell line counterparts.
View Article and Find Full Text PDFHypoxic microenvironment is a hallmark of solid tumors, especially glioblastoma. The strong reliance of glioma-propagating cells (GPCs) on hypoxia-induced survival advantages is potentially exploitable for drug development. To identify key signaling pathways for hypoxia adaptation by patient-derived GPCs, we performed a kinase inhibitor profiling by screening 188 small molecule inhibitors against 130 different kinases in normoxia and hypoxia.
View Article and Find Full Text PDFParkinson's disease (PD) is an age-dependent neurodegenerative condition. Leucine-rich repeat kinase 2 (LRRK2) mutations are the most frequent cause of sporadic and autosomal dominant PD. The exact role of LRRK2 protective variants (R1398H, N551K) together with a pathogenic mutant (G2019S) in aging and neurodegeneration is unknown.
View Article and Find Full Text PDFRecent genomic studies on the glioblastoma (GBM) subtypes (, mesenchymal, proneural, and classical) pave a way for effective clinical treatments of the recurrent brain tumor. However, identification of the GBM subtype is complicated by the intratumoral heterogeneity that results in coexistence of multiple subtypes within the tissue specimen. Here, we present the use of hyperspectral stimulated Raman scattering (SRS) microscopy for rapid, label-free molecular assessment of GBM intratumoral heterogeneity with submicron resolution.
View Article and Find Full Text PDFIntratumoral heterogeneity is a hallmark of glioblastoma (GBM) tumors, thought to negatively influence therapeutic outcome. Previous studies showed that mesenchymal tumors have a worse outcome than the proneural subtype. Here we focus on STAT3 as its activation precedes the proneural-mesenchymal transition.
View Article and Find Full Text PDFThe original version of the article unfortunately contained an error.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive tumor of the brain. NF1, a tumor suppressor gene and RAS-GTPase, is one of the highly mutated genes in GBM. Dysregulated NF1 expression promotes cell invasion, proliferation, and tumorigenesis.
View Article and Find Full Text PDFWe report the development and implementation of an epi-detected spectral-focusing hyperspectral stimulated Raman scattering (SRS) imaging technique for label-free biomolecular subtyping of glioblastomas (GBMs). The hyperspectral SRS imaging technique developed generates SRS image stacks (from 2800 to 3020 cm at 7 cm intervals) within 30 s through controlling the time delay between the chirped pump and Stokes beams. SRS images at representative Raman shifts (e.
View Article and Find Full Text PDFChromosomal rearrangements are common in cancer. More than 50% occur in common fragile sites and disrupt tumor suppressors. However, such rearrangements are not known in gastric cancer.
View Article and Find Full Text PDFGlioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription.
View Article and Find Full Text PDFCompetitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells.
View Article and Find Full Text PDFThe transient receptor potential melastatin 4 (TRPM4) channel has been suggested to play a key role in the treatment of ischemic stroke. However, in vivo evaluation of TRPM4 channel, in particular by direct channel suppression, is lacking. In this study, we used multimodal imaging to assess edema formation and quantify the amount of metabolically functional brain salvaged after a rat model of stroke reperfusion.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2017
The Cancer Genome Atlas effort has generated significant interest in a new paradigm shift in tumor tissue analysis, patient diagnosis and subsequent treatment decision. Findings have highlighted the limitation of sole reliance on histology, which can be confounded by inter-observer variability. Such studies demonstrate that histologically similar grade IV brain tumors can be divided into four molecular subtypes based on gene expression, with each subtype demonstrating unique genomic aberrations and clinical outcome.
View Article and Find Full Text PDFGlioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels.
View Article and Find Full Text PDFA hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies.
View Article and Find Full Text PDFBackground: Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored.
View Article and Find Full Text PDFDrosophila larval brain neuroblasts divide asymmetrically to balance between self-renewal and differentiation. Here, we demonstrate that the SCF(Slimb) E3 ubiquitin ligase complex, which is composed of Cul1, SkpA, Roc1a and the F-box protein Supernumerary limbs (Slimb), inhibits ectopic neuroblast formation and regulates asymmetric division of neuroblasts. Hyperactivation of Akt leads to similar neuroblast overgrowth and defects in asymmetric division.
View Article and Find Full Text PDFAims: We explore the role of an elevated O2(-):H2O2 ratio as a prosurvival signal in glioma-propagating cells (GPCs). We hypothesize that depleting this ratio sensitizes GPCs to apoptotic triggers.
Results: We observed that an elevated O2(-):H2O2 ratio conferred enhanced resistance in GPCs, and depletion of this ratio by pharmacological and genetic methods sensitized cells to apoptotic triggers.