Translational studies in human cholestatic diseases have for years been hindered by various challenges, including the rarity of the disorders, the difficulty in obtaining biliary tissue from across the spectrum of the disease stage, and the difficulty culturing and maintaining primary cholangiocytes. Organoid technology is increasingly being viewed as a technological breakthrough in translational medicine as it allows the culture and biobanking of self-organizing cells from various sources that facilitate the study of pathophysiology and therapeutics, including from individual patients in a personalized approach. This review describes current research using biliary organoids for the study of human cholestatic diseases and the emerging applications of organoids to regenerative medicine directed at the biliary tree.
View Article and Find Full Text PDFBile formation is a fundamental physiological process that is vital to the survival of all vertebrates. However, little was known about the mechanisms of this secretion until after World War II. Initial studies involved classic physiologic studies in animal models and humans, which progressed to include studies in isolated cells and membrane vesicles.
View Article and Find Full Text PDFBackground & Aims: The nuclear factor of activated T-cells (NFAT) plays an important role in immune responses by regulating the expression of inflammatory genes. However, it is not known whether NFAT plays any role in the bile acid (BA)-induced hepatic inflammatory response. Thus, we aimed to examine the functional role of NFATc3 in cholestatic liver injury in mice and humans.
View Article and Find Full Text PDFCholangiopathies, including primary sclerosing cholangitis, are a group of heterogeneous diseases characterized by inflammation and fibrosis of the intrahepatic and extrahepatic bile duct epithelium. Studies, especially of primary sclerosing cholangitis, have been hampered by the difficulty in accessing the cholangiocyte, instability of in vitro culture systems, and reliance on (limited) samples from end-stage disease. Here we describe a novel method of culturing biliary cells from bile of primary sclerosing cholangitis patients undergoing endoscopic retrograde cholangiopancreatography for clinical indications.
View Article and Find Full Text PDFPrimary sclerosing cholangitis (PSC) is a heterogeneous and progressive fibroinflammatory cholangiopathy with no known etiology or effective treatment. Studies of PSC are limited due to difficulty in accessing the cholangiocyte, the small percentage of these cells in the liver, instability of in vitro culture systems, and reliance on samples from end-stage disease. Here, we demonstrate that stem cells can be isolated from the bile of PSC patients undergoing endoscopic retrograde cholangiopancreatography earlier in their clinical course and maintained long term in vitro as three-dimensional (3D) organoids that express a biliary genetic phenotype.
View Article and Find Full Text PDFMechanisms of bile acid-induced (BA-induced) liver injury in cholestasis are controversial, limiting development of new therapies. We examined how BAs initiate liver injury using isolated liver cells from humans and mice and in-vivo mouse models. At pathophysiologic concentrations, BAs induced proinflammatory cytokine expression in mouse and human hepatocytes, but not in nonparenchymal cells or cholangiocytes.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2017
The multidrug resistance-associated protein 2 (Mrp2) is an ATP-binding cassette transporter that transports a wide variety of organic anions across the apical membrane of epithelial cells. The expression of Mrp2 on the plasma membrane is regulated by protein-protein interactions. Cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) interacts with transmembrane proteins via its PDZ domain and reduces their cell surface expression by increasing lysosomal degradation and intracellular retention.
View Article and Find Full Text PDFUnlabelled: Sirtuin1 (Sirt1; mammalian homolog of Saccharomyces cerevisiae enzyme Sir2) is a transcriptional and transactivational regulator of murine farnesoid X receptor (Fxr), which is the primary bile acid (BA) sensor, and critical regulator of BA metabolism in physiological and pathophysiological conditions. Previous studies have suggested compromised Sirt1 expression in rodent models of cholestatic liver injury. We hypothesized that Sirt1 could be potentially targeted to alleviate cholestatic liver injury.
View Article and Find Full Text PDFThe heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species.
View Article and Find Full Text PDFUnlabelled: The intercellular adhesion molecule 1 (ICAM-1) is induced in mouse liver after bile duct ligation (BDL) and plays a key role in neutrophil-mediated liver injury in BDL mice. ICAM-1 has been shown to interact with cytoskeletal ezrin-radixin-moesin (ERM) proteins that also interact with the PDZ protein, Na(+) /H(+) exchanger regulatory factor 1 (NHERF-1/EBP50). In NHERF-1(-/-) mice, ERM proteins are significantly reduced in brush-border membranes from kidney and small intestine.
View Article and Find Full Text PDFChronic cholestasis results in liver injury and eventually liver failure. Although ursodeoxycholic acid (UDCA) showed limited benefits in primary biliary cirrhosis, there is an urgent need to develop alternative therapy for chronic cholestatic disorders. Previous studies from our laboratory demonstrated that all-trans-retinoic acid (atRA) is a potent suppressor of CYP7A1, the rate-limiting enzyme in bile acid synthesis.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2014
Deficiency of ABCB4 is associated with several forms of cholestasis in humans. Abcb4(-/-) mice also develop cholestasis, but it remains uncertain what role other canalicular transporters play in the development of this disease. We examined the expression of these transporters in Abcb4(-/-) mice compared with their wild-type littermate controls at ages of 10 days and 3, 6, and 12 wk.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2014
The organic solute transporter OSTα-OSTβ is a key transporter for the efflux of bile acids across the basolateral membrane of ileocytes and the subsequent return of bile acids to the liver. Ostα(-/-) mice exhibit reduced bile acid pools and impaired lipid absorption. In this study, wild-type and Ostα(-/-) mice were characterized at 5 and 12 mo of age.
View Article and Find Full Text PDFUnlabelled: Multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 (MDR3/ABCB4) is a critical determinant of biliary phosphatidylcholine (PC) secretion. Clinically, mutations and partial deficiencies in MDR3 result in cholestatic liver injury. Thus, MDR3 is a potential therapeutic target for cholestatic liver disease.
View Article and Find Full Text PDFBackground & Aims: Oltipraz (4-methyl-5(pyrazinyl-2)-1-2-dithiole-3-thione), a promising cancer preventive agent, has an antioxidative activity and ability to enhance glutathione biosynthesis, phase II detoxification enzymes and multidrug resistance-associated protein-mediated efflux transporters. Oltipraz can protect against hepatotoxicity caused by carbon tetrachloride, acetaminophen and alpha-naphthylisothiocyanate. Whether oltipraz has hepato-protective effects on obstructive cholestasis is unknown.
View Article and Find Full Text PDFNa-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5'-diisothiocyanato-2-2'-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH.
View Article and Find Full Text PDFThe bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy.
View Article and Find Full Text PDFThe sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia, as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the postmetamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2012
The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2(-/-) mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2(-/-) compared with wild-type control mice.
View Article and Find Full Text PDFUnlabelled: The liver-specific bile salt export pump (BSEP) is crucial for bile acid-dependent bile flow at the apical membrane. BSEP, a member of the family of structurally related adenosine triphosphate (ATP)-binding cassette (ABC) proteins, is composed of 12 transmembrane segments (TMS) and two large cytoplasmic nucleotide-binding domains (NBDs). The regulation of trafficking of BSEP to and from the cell surface is not well understood, but is believed to play an important role in cholestatic liver diseases such as primary familial intrahepatic cholestasis type 2 (PFIC2).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2011
Bile acid homeostasis is tightly maintained through interactions between the liver, intestine, and kidney. During cholestasis, the liver is incapable of properly clearing bile acids from the circulation, and alternative excretory pathways are utilized. In obstructive cholestasis, urinary elimination is often increased, and this pathway is further enhanced after bile duct ligation in mice that are genetically deficient in the heteromeric, basolateral organic solute transporter alpha-beta (Ostα-Ostβ).
View Article and Find Full Text PDFDrug Metab Dispos
October 2010
Breast cancer resistance protein (Bcrp) is a member of the ATP-binding cassette membrane transporter family, which is expressed apically in liver, kidney, and intestine epithelium. Recent reports suggest that in addition to xenobiotics, porphyrins, and food toxins, Bcrp can also transport bile acids and, therefore, may participate in the adaptive response to cholestasis. Bile duct ligation (BDL), an experimental model of obstructive cholestasis, was performed in male wild-type (WT) and Bcrp knockout (KO) mice.
View Article and Find Full Text PDF