The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission.
View Article and Find Full Text PDFThe rhizome is responsible for the invasiveness and competitiveness of many plants with great economic and agricultural impact worldwide. Besides its value as an invasive organ, the rhizome plays a role in the establishment and massive growth of forage, providing biomass for biofuel production. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development, and function in plants.
View Article and Find Full Text PDFResearch on the distribution and structure of fungal communities in caves is lacking. Kartchner Caverns is a wet and mineralogically diverse carbonate cave located in an escarpment of Mississippian Escabrosa limestone in the Whetstone Mountains, Arizona, USA. Fungal diversity from speleothem and rock wall surfaces was examined with 454 FLX Titanium sequencing technology using the Internal Transcribed Spacer 1 as a fungal barcode marker.
View Article and Find Full Text PDFSequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles.
View Article and Find Full Text PDFThe potato psyllid (PoP) Bactericera cockerelli (Sulc) and Asian citrus psyllid (ACP) Diaphorina citri Kuwayama are the insect vectors of the fastidious plant pathogen, Candidatus Liberibacter solanacearum (CLso) and Ca. L. asiaticus (CLas), respectively.
View Article and Find Full Text PDFBackground: The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant.
View Article and Find Full Text PDFCarbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA.
View Article and Find Full Text PDFBackground: The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility.
Methodology: The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.
Background: Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric.
Results: In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues.
Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection.
View Article and Find Full Text PDFCaves are relatively accessible subterranean habitats ideal for the study of subsurface microbial dynamics and metabolisms under oligotrophic, non-photosynthetic conditions. A 454-pyrotag analysis of the V6 region of the 16S rRNA gene was used to systematically evaluate the bacterial diversity of ten cave surfaces within Kartchner Caverns, a limestone cave. Results showed an average of 1,994 operational taxonomic units (97 % cutoff) per speleothem and a broad taxonomic diversity that included 21 phyla and 12 candidate phyla.
View Article and Find Full Text PDFBackground: Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes.
View Article and Find Full Text PDFNearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations.
View Article and Find Full Text PDFPremise Of The Study: The common reed (Phragmites australis), one of the most widely distributed of all angiosperms, uses its rhizomes (underground stems) to invade new territory, making it one of the most successful weedy species worldwide. Characterization of the rhizome transcriptome and proteome is needed to identify candidate genes and proteins involved in rhizome growth, development, metabolism, and invasiveness.
Methods: We employed next-generation sequencing technologies including 454 and Illumina platforms to characterize the reed rhizome transcriptome and used quantitative proteomics techniques to identify the rhizome proteome.
Mol Plant Microbe Interact
March 2012
SyMAP (Synteny Mapping and Analysis Program) was originally developed to compute synteny blocks between a sequenced genome and a FPC map, and has been extended to support pairs of sequenced genomes. SyMAP uses MUMmer to compute the raw hits between the two genomes, which are then clustered and filtered using the optional gene annotation. The filtered hits are input to the synteny algorithm, which was designed to discover duplicated regions and form larger-scale synteny blocks, where intervening micro-rearrangements are allowed.
View Article and Find Full Text PDFGlandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels.
View Article and Find Full Text PDFWe report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.
View Article and Find Full Text PDFFull-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.
View Article and Find Full Text PDFEukaryotic plant pathogens are responsible for the destruction of billions of dollars worth of crops each year. With large-scale genomics of both pathogens and hosts and the corresponding computational analysis, biologists are now able to gain knowledge about many pathogenic and defense genes concurrently. To study the interactions between these two organism groups, it is necessary to design experiments to elucidate the genes being expressed during the invasion of the pathogen into the host.
View Article and Find Full Text PDFBackground: Brachypodium distachyon (Brachypodium) has been recognized as a new model species for comparative and functional genomics of cereal and bioenergy crops because it possesses many biological attributes desirable in a model, such as a small genome size, short stature, self-pollinating habit, and short generation cycle. To maximize the utility of Brachypodium as a model for basic and applied research it is necessary to develop genomic resources for it. A BAC-based physical map is one of them.
View Article and Find Full Text PDFBackground: New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs.
View Article and Find Full Text PDFRecent advances in both clone fingerprinting and draft sequencing technology have made it increasingly common for species to have a bacterial artificial clone (BAC) fingerprint map, BAC end sequences (BESs) and draft genomic sequence. The FPC (fingerprinted contigs) software package contains three modules that maximize the value of these resources. The BSS (blast some sequence) module provides a way to easily view the results of aligning draft sequence to the BESs, and integrates the results with the following two modules.
View Article and Find Full Text PDFBackground: Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR) and methylation spanning linker libraries (MSLL). These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends.
View Article and Find Full Text PDFWe describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence.
View Article and Find Full Text PDF