Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule.
View Article and Find Full Text PDFExposure to high-dose ionizing radiation can lead to life-threatening injuries and mortality. Bone marrow is the most sensitive organ to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) with the potential sequelae of infection, hemorrhage, anemia, and death if untreated. The development of medical countermeasures (MCMs) to protect or mitigate radiation injury is a medical necessity.
View Article and Find Full Text PDFSurvivors of acute radiation exposure suffer from the delayed effects of acute radiation exposure (DEARE), a chronic condition affecting multiple organs, including lung, kidney, heart, gastrointestinal tract, eyes, and brain, and often causing cancer. While effective medical countermeasures (MCM) for the hematopoietic-acute radiation syndrome (H-ARS) have been identified and approved by the FDA, development of MCM for DEARE has not yet been successful. We previously documented residual bone marrow damage (RBMD) and progressive renal and cardiovascular DEARE in murine survivors of H-ARS, and significant survival efficacy of 16,16-dimethyl prostaglandin E2 (dmPGE2) given as a radioprotectant or radiomitigator for H-ARS.
View Article and Find Full Text PDFThe hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30.
View Article and Find Full Text PDFExposure to potentially lethal high-dose ionizing radiation results in bone marrow suppression, known as the hematopoietic acute radiation syndrome (H-ARS), which can lead to pancytopenia and possible death from hemorrhage or infection. Medical countermeasures to protect from or mitigate the effects of radiation exposure are an ongoing medical need. We recently reported that 16,16 dimethyl prostaglandin E (dmPGE) given prior to lethal irradiation protects hematopoietic stem (HSCs) and progenitor (HPCs) cells and accelerates hematopoietic recovery by attenuating mitochondrial compromise, DNA damage, apoptosis, and senescence.
View Article and Find Full Text PDFAging of hematopoiesis is associated with increased frequency and clonality of hematopoietic stem cells (HSCs), along with functional compromise and myeloid bias, with donor age being a significant variable in survival after HSC transplantation. No clinical methods currently exist to enhance aged HSC function, and little is known regarding how aging affects molecular responses of HSCs to biological stimuli. Exposure of HSCs from young fish, mice, nonhuman primates, and humans to 16,16-dimethyl prostaglandin E (dmPGE) enhances transplantation, but the effect of dmPGE on aged HSCs is unknown.
View Article and Find Full Text PDFMedical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI).
View Article and Find Full Text PDFBone marrow (BM) hematopoietic stem cells (HSCs) become dysfunctional during aging (i.e., they are increased in number but have an overall reduction in long-term repopulation potential and increased myeloid differentiation) compared with young HSCs, suggesting limited use of old donor BM cells for hematopoietic cell transplantation (HCT).
View Article and Find Full Text PDFIdentification of medical countermeasures (MCM) to mitigate radiation damage and/or protect first responders is a compelling unmet medical need. The prostaglandin E2 (PGE2) analog, 16,16 dimethyl-PGE2 (dmPGE2), has shown efficacy as a radioprotectant and radiomitigator that can enhance hematopoiesis and ameliorate intestinal mucosal cell damage. In this study, we optimized the time of administration of dmPGE2 for protection and mitigation against mortality from the hematopoietic acute radiation syndrome (H-ARS) in young adult mice, evaluated its activity in pediatric and geriatric populations, and investigated potential mechanisms of action.
View Article and Find Full Text PDFDevelopment of medical countermeasures against radiation relies on robust animal models for efficacy testing. Mouse models have advantages over larger species due to economics, ease of conducting aging studies, existence of historical databases, and research tools allowing for sophisticated mechanistic studies. However, the radiation dose-response relationship of inbred strains is inherently steep and sensitive to experimental variables, and inbred models have been criticized for lacking genetic diversity.
View Article and Find Full Text PDFMurine hematopoietic-acute radiation syndrome (H-ARS) survivors of total body radiation (TBI) have a significant loss of heart vessel endothelial cells, along with increased tissue iron, as early as 4 mo post-TBI. The goal of the current study was to determine the possible role for excess tissue iron in the loss of coronary artery endothelial cells. Experiments used the H-ARS mouse model with gamma radiation exposure of 853 cGy (LD50/30) and time points from 1 to 12 wk post-TBI.
View Article and Find Full Text PDFIonizing radiation exposure results in acute and delayed bone marrow suppression. Treatment of mice with 16,16-dimethyl prostaglandin E (dmPGE) prior to lethal ionizing radiation (IR) facilitates survival, but the cellular and molecular mechanisms are unclear. In this study we show that dmPGE attenuates loss and enhances recovery of bone marrow cellularity, corresponding to a less severe hematopoietic stem cell nadir, and significantly preserves long-term repopulation capacity and progenitor cell function.
View Article and Find Full Text PDFOsteoblast number and activity decreases with aging, contributing to the age-associated decline of bone mass, but the mechanisms underlying changes in osteoblast activity are not well understood. Here, we show that the age-associated bone loss critically depends on impairment of the ability of megakaryocytes (MKs) to support osteoblast proliferation. Co-culture of osteoblast precursors with young MKs is known to increase osteoblast proliferation and bone formation.
View Article and Find Full Text PDFWe have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI).
View Article and Find Full Text PDFAccurate analyses of the delayed effects of acute radiation exposure in survivors of the hematopoietic acute radiation syndrome are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar hematopoietic acute radiation syndrome studies conducted over a 7-y period in the authors' laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic delayed effects of acute radiation exposure at various times up to 30 mo of age. Significant loss of long-term repopulating potential of phenotypically defined primitive hematopoietic stem cells was documented in hematopoietic acute radiation syndrome survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity, and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSL CD150+; the phenotype known to be enriched for hematopoietic stem cells), and increased cycling of KSL CD150+ cells.
View Article and Find Full Text PDFSeveral investigators performing bone marrow transplantation studies have previously reported sporadic increases in mortality that were associated with pronounced swelling in the face, head and neck of mice. Over the past few years, we and others have noted an increasing number of experiments in which mice that have received total-body irradiation (TBI) or partial-body irradiation (PBI) develop swollen muzzles, drastic thickening of the upper lip and redness, bruising and/or swelling around the nose and muzzle and sometimes over the top of the head. We refer to this rapid and extreme swelling after irradiation as swollen muzzle syndrome (SMS).
View Article and Find Full Text PDFThe threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.
View Article and Find Full Text PDFManipulations of lethally-irradiated animals, such as for administration of pharmaceuticals, blood sampling, or other laboratory procedures, have the potential to induce stress effects that may negatively affect morbidity and mortality. To investigate this in a murine model of the hematopoietic acute radiation syndrome, 20 individual survival efficacy studies were grouped based on the severity of the administration (Admn) schedules of their medical countermeasure (MCM) into Admn 1 (no injections), Admn 2 (1-3 injections), or Admn 3 (29 injections or 6-9 oral gavages). Radiation doses ranged from LD30/30 to LD95/30.
View Article and Find Full Text PDFIn an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.
View Article and Find Full Text PDFHematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs.
View Article and Find Full Text PDFWhile high dose total body irradiation (TBI) is used therapeutically, the proliferation of nuclear weapons, increasing use of nuclear power, and worldwide radical terrorism underscore the need to develop countermeasures to a radiological mass casualty event. The hematopoietic syndrome of the acute radiation syndrome (HS-ARS) results from severe compromise to the hematopoietic system, including lymphocytopenia, neutropenia, thrombocytopenia, and possible death from infection and/or hemorrhage. Given adequate time to recover, expand, and appropriately differentiate, bone marrow hematopoietic stem cells (HSC) and progenitor cells (HPC) may overcome HS-ARS and restore homeostasis of the hematopoietic system.
View Article and Find Full Text PDFResidual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS).
View Article and Find Full Text PDFThe authors have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten- to 12-wk-old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, (137)Cs, 0.62-0.
View Article and Find Full Text PDFProlonged administration of methyl transferase inhibitors may increase response rates in myelodysplastic syndromes (MDS). Fourteen MDS patients with anemia and less than 10% marrow blasts received azacitidine 50 mg/m(2) thrice weekly for 2 weeks every 4 weeks; 7 also received weekly erythropoietin. The response rate of 43% did not improve the rates reported with other azacitidine administration schedules, so the study was closed.
View Article and Find Full Text PDF