Publications by authors named "Carol S Lin"

Food waste recycling via fungal hydrolysis and lactic acid (LA) fermentation has been investigated. Hydrolysates derived from mixed food waste and bakery waste were rich in glucose (80.0-100.

View Article and Find Full Text PDF

A techno-economic study of food waste valorization via fungal hydrolysis, microalgae cultivation and production of plasticizer, lactic acid and animal feed was simulated and evaluated by Super-Pro Designer®. A pilot-scale plant was designed with a capacity of 1 metric ton day(-1) of food waste with 20 years lifetime. Two scenarios were proposed with different products: Scenario (I) plasticizer & lactic acid, Scenario (II) plasticizer & animal feed.

View Article and Find Full Text PDF

Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization.

View Article and Find Full Text PDF

In this study, an advanced biorefinery technology that uses mixed bakery waste has been developed to produce l-lactic acid using an adaptively evolved Thermoanaerobacterium aotearoense LA1002-G40 in a non-sterilized system. Under these conditions, mixed bakery waste was directly hydrolysed by Aspergillus awamori and Aspergillus oryzae, resulting in a nutrient-rich hydrolysate containing 83.6g/L glucose, 9.

View Article and Find Full Text PDF

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture.

View Article and Find Full Text PDF

Depletion of fossil fuels and environmental problems are encouraging research on alternative fuels of renewable sources. Biodiesel is a promising alternative fuel to be used as a substitute to the petroleum based diesel fuels. However, the cost of biodiesel production is high and is attributed mainly to the feedstock used which leads to the investigation of low cost feedstocks that are economically feasible.

View Article and Find Full Text PDF

Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification.

View Article and Find Full Text PDF

Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater.

View Article and Find Full Text PDF

Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods.

View Article and Find Full Text PDF

The potential of lipids derived from food-waste and algal biomass (produced from food-waste hydrolysate) for the formation of plasticizers and surfactants is investigated herein. Plasticizers were formed by epoxidation of double bonds of methylated unsaturated fatty acids with in situ generated peroxoformic acid. Assuming that all unsaturated fatty acids are convertible, 0.

View Article and Find Full Text PDF

E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry.

View Article and Find Full Text PDF

Mixed food waste, which was directly collected from restaurants without pretreatments, was used as a valuable feedstock in succinic acid (SA) fermentation in the present study. Commercial enzymes and crude enzymes produced from Aspergillus awamori and Aspergillus oryzae were separately used in hydrolysis of food waste, and their resultant hydrolysates were evaluated. For hydrolysis using the fungal mixture comprising A.

View Article and Find Full Text PDF

In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation.

View Article and Find Full Text PDF

Potential of fungal hydrolysis in submerged fermentation by Aspergillus awamori and Aspergillus oryzae as a food waste treatment process and for preparation of fermentation feedstock has been investigated. By fungal hydrolysis, 80-90% of the initial amount of waste was reduced and degraded within 36-48 h into glucose, free amino nitrogen (FAN) and phosphate. Experiments revealed that 80-90% of starch can be converted into glucose and highest concentration of FAN obtained, when solid mashes of A.

View Article and Find Full Text PDF

The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries.

View Article and Find Full Text PDF

Glucose, free amino nitrogen (FAN), and phosphate were recovered from food waste by fungal hydrolysis using Aspergillus awamori and Aspergillus oryzae. Using 100g food waste (dry weight), 31.9 g glucose, 0.

View Article and Find Full Text PDF

Porous agar materials have been prepared from marine macroalgae species using a simple microwave-assisted extraction/drying methodology, providing a new family of polysaccharide derived porous solids. The microwave-assisted extraction allows a more efficient and less time-consuming extraction of the polysaccharide compared to conventional extraction protocols based on conventional heating. DRIFT and (13)C NMR results indicated that the internal agar structure (based on d-galactose and 3,6-anhydro-l-galactose linked units) was preserved after the extraction methodology, which opens a wide range of future possibilities and applications for this new family of porous polysaccharides.

View Article and Find Full Text PDF

The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production.

View Article and Find Full Text PDF

During endochondral bone development, both the chondrogenic differentiation of mesenchyme and the hypertrophic differentiation of chondrocytes coincide with the proliferative arrest of the differentiating cells. However, the mechanisms by which differentiation is coordinated with cell cycle withdrawal, and the importance of this coordination for skeletal development, have not been defined. Through analysis of mice lacking the pRB-related p107 and p130 proteins, we found that p107 was required in prechondrogenic condensations for cell cycle withdrawal and for quantitatively normal alpha1(II) collagen expression.

View Article and Find Full Text PDF

Huntington's disease, a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expanded, unstable trinucleotide repeat in a novel 4p16.3 gene. To lay the foundation for exploring the pathogenic mechanism in HD, we have determined the structure of the disease gene and examined its expression.

View Article and Find Full Text PDF