Toxoplasma gondii is an obligate intracellular parasite capable of causing severe disease due to congenital infection and in patients with compromised immune systems. Control of infection is dependent on a robust Th1 type immune response including production of interferon gamma (IFN-γ), which is essential for control. IFN-γ activates a variety of antimicrobial mechanisms in host cells, which are then able to control intracellular parasites such as T.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) infections affect millions of children and adults every year. Despite the significant disease burden, there are currently no safe and effective vaccines or therapeutics. We employed a replicon-based high throughput screen combined with live-virus triaging assays to identify three novel diversity-oriented synthesis-derived scaffolds with activity against RSV.
View Article and Find Full Text PDFBackground: The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways.
Methods: We screened and optimized a probe from a DOS library using whole-cell phenotypic assays.
Mechanism studies of a mild palladium-catalyzed decarboxylation of aromatic carboxylic acids are described. In particular, reaction orders and activation parameters for the two stages of the transformation were determined. These studies guided development of a catalytic system capable of turnover.
View Article and Find Full Text PDFIntegration of flexible data-analysis tools with cheminformatics methods is a prerequisite for successful identification and validation of "hits" in high-throughput screening (HTS) campaigns. We have designed, developed, and implemented a suite of robust yet flexible cheminformatics tools to support HTS activities at the Broad Institute, three of which are described herein. The "hit-calling" tool allows a researcher to set a hit threshold that can be varied during downstream analysis.
View Article and Find Full Text PDFThe synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described.
View Article and Find Full Text PDFHere, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure-activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth.
View Article and Find Full Text PDFA build/couple/pair (B/C/P) strategy was employed to generate a library of 7936 stereochemically diverse 12-membered macrolactams. All 8 stereoisomers of a common linear amine precursor were elaborated to form the corresponding 8 stereoisomers of two regioisomeric macrocyclic scaffolds via head-to-tail cyclization. Subsequently, these 16 scaffolds were further diversified via capping of two amine functionalities on SynPhase Lanterns.
View Article and Find Full Text PDFOrthogonally protected chiral β-hydroxy-γ-amino acids can be accessed in >100 g quantities from readily available starting materials and reagents in 3-4 steps. These chiral synthons contain two adjacent stereocenters along with suitably protected functional groups (O-TBS, N-Boc) for downstream reactivity. Implementation of two existing aldol technologies allows rapid access to all possible stereoisomers of 1.
View Article and Find Full Text PDFAn aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected γ-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner.
View Article and Find Full Text PDFThe first total synthesis of (+)-calphostin D and the total synthesis of (+)-phleichrome are outlined. The convergent syntheses utilize an enantiopure biaryl common intermediate, which is formed via an enantioselective catalytic biaryl coupling. The established axial chirality is transferred to the perylenequinone helical stereochemistry with good fidelity.
View Article and Find Full Text PDFThe evolution of the first total synthesis of perylenequinone cercosporin is described. The key features developed during these efforts include a biscuprate epoxide alkylation, installation of the methylidene acetal, palladium-catalyzed O-arylation, and C3,C3'-decarbonylation. Due to the rapid atropisomerization of the helical axis of cercosporin (at 37 degrees C), the sequencing of these transformations was critical.
View Article and Find Full Text PDFAn efficient and stereoselective total synthesis of the perylenequinone natural product hypocrellin A (1) is described. The key features include a potentially biomimetic 1,8-diketone aldol cyclization to set the centrochiral C7,C7'-stereochemistry, bis(trifluoroacetoxy)iodobenzene mediated oxygenation, a palladium-catalyzed decarboxylation, and an enantioselective catalytic oxidative 2-naphthol coupling to establish the biaryl axial chirality. The helical stereochemistry is formed from an axial chiral intermediate and is then utilized in a dynamic stereochemical transfer to dictate the stereochemistry of the C7,C7'-seven membered ring formed during the aldol cyclization.
View Article and Find Full Text PDFA palladium-catalyzed aromatic decarboxylation reaction has been developed. With electron-rich aromatic acids, the reaction proceeds efficiently under fairly mild conditions in good yields. The method was useful with complex functionalized substrates containing hindered carboxylic acids.
View Article and Find Full Text PDF[reaction: see text] An enantioselective synthesis of the chiral bisnaphthopyrone natural product nigerone is reported. The key step was an eight-step isomerization process to form the final natural product. The isomerization precursor was constructed via asymmetric oxidative biaryl coupling of an advanced intermediate with a 1,5-diaza-cis-decalin copper catalyst.
View Article and Find Full Text PDFChiral 1,5-diaza-cis-decalins have been examined as ligands in the enantioselective oxidative biaryl coupling of substituted 2-naphthol derivatives. Under the optimal conditions employing 2.5-10 mol % of a 1,5-diaza-cis-decalin copper(II) catalyst with oxygen as the oxidant, enantioselective couplings (44-96% ee) could be achieved for a range of 3-substituted 2-naphthols including the ester, ketone, phosphonyl, and sulfonyl derivatives.
View Article and Find Full Text PDFBy using oxygen as the terminal oxidant, copper complexes derived from chiral 1,5-diaza-cis-decalin catalyze the enantioselective oxidative biaryl coupling of highly functionalized naphthols to provide octa- and decasubstituted binaphthalenes with high selectivity (86-90% ee). Products containing very electron-rich naphthalenes were prone to epimerization under the reaction conditions. This epimerization could be suppressed by employing naphthol starting materials with phenol protecting groups that attenuated the electron-rich nature of the naphthalenes.
View Article and Find Full Text PDF