Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P.
View Article and Find Full Text PDFWhite-nose syndrome has killed millions of bats, yet both the origins and infection strategy of the causative fungus, , remain elusive. We provide evidence for a novel hypothesis that emerged from plant-associated fungi and retained invasion strategies affiliated with fungal pathogens of plants. We demonstrate that invades bat skin in successive biotrophic and necrotrophic stages (hemibiotrophic infection), a mechanism previously only described in plant fungal pathogens.
View Article and Find Full Text PDFWhite-nose syndrome (WNS) is causing significant declines in populations of North American hibernating bats, and recent western and southern expansions of the disease have placed additional species at risk. Understanding differences in species susceptibility and identifying management actions to reduce mortality of bats from WNS are top research priorities. However, the use of wild-caught susceptible bats, such as , as model species for WNS research is problematic and places additional pressure on remnant populations.
View Article and Find Full Text PDFEight Bald Eagle ( Haliaeetus leucocephalus ) nestlings heavily infested with larval ticks were found in or under a nest near the confluence of the Verde and Salt rivers in Arizona in 2009-11. The 8-12-wk-old nestlings were slow to respond to stimuli and exhibited generalized muscle weakness or paresis of the pelvic limbs. Numerous cutaneous and subcutaneous hemorrhages were associated with sites of tick attachment.
View Article and Find Full Text PDFBackground: The physiological effects of white-nose syndrome (WNS) in hibernating bats and ultimate causes of mortality from infection with Pseudogymnoascus (formerly Geomyces) destructans are not fully understood. Increased frequency of arousal from torpor described among hibernating bats with late-stage WNS is thought to accelerate depletion of fat reserves, but the physiological mechanisms that lead to these alterations in hibernation behavior have not been elucidated. We used the doubly labeled water (DLW) method and clinical chemistry to evaluate energy use, body composition changes, and blood chemistry perturbations in hibernating little brown bats (Myotis lucifugus) experimentally infected with P.
View Article and Find Full Text PDFMorbidity and mortality events caused by avian paramyxovirus-1 (APMV-1) in Double-crested Cormorant (DCCO; Phalacrocorax auritus) nesting colonies in the US and Canada have been sporadically documented in the literature. We describe APMV-1 associated outbreaks in DCCO in the US from the first reported occurrence in 1992 through 2012. The frequency of APMV-1 outbreaks has increased in the US over the last decade, but the majority of events have continued to occur in DCCO colonies in the Midwestern states.
View Article and Find Full Text PDFBefore the discovery of white-nose syndrome (WNS), a fungal disease caused by Pseudogymnoascus destructans, there were no reports of fungal skin infections in bats during hibernation. In 2011, bats with grossly visible fungal skin infections similar in appearance to WNS were reported from multiple sites in Wisconsin, US, a state outside the known range of P. destructans and WNS at that time.
View Article and Find Full Text PDFDefinitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366-385 nm) elicits a distinct orange-yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS.
View Article and Find Full Text PDFMonkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models.
View Article and Find Full Text PDFDiseases threaten corals globally, but 40 years on their causes remain mostly unknown. We hypothesize that inconsistent application of a complete diagnostic approach to coral disease has contributed to this slow progress. We quantified methods used to investigate coral disease in 492 papers published between 1965 and 2013.
View Article and Find Full Text PDFThe emerging wildlife disease white-nose syndrome is causing widespread mortality in hibernating North American bats. White-nose syndrome occurs when the fungus Geomyces destructans infects the living skin of bats during hibernation, but links between infection and mortality are underexplored. We analyzed blood from hibernating bats and compared blood electrolyte levels to wing damage caused by the fungus.
View Article and Find Full Text PDFEpizootic mortality in several geese species, including cackling geese (Branta hutchinsii) and Canada geese (Branta canadensis), has been recognized in the Willamette Valley of Oregon for over a decade. Birds are generally found dead on a body of water or are occasionally observed displaying neurologic clinical signs such as an inability to raise or control the head prior to death. Investigation of these epizootic mortality events has revealed the etiology to be accidental poisoning with the rodenticide zinc phosphide (Zn(3)P(2)).
View Article and Find Full Text PDFWhite nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G.
View Article and Find Full Text PDFWhite-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores.
View Article and Find Full Text PDFWhite-nose syndrome, associated with the fungal skin infection geomycosis, caused regional population collapse in bats in North America. Our results, based on histopathology, show the presence of white-nose syndrome in Europe. Dermatohistopathology on two bats (Myotis myotis) found dead in March 2010 with geomycosis in the Czech Republic had characteristics resembling Geomyces destructans infection in bats confirmed with white-nose syndrome in US hibernacula.
View Article and Find Full Text PDFIn the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g.
View Article and Find Full Text PDFWhite-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America. The disease's name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS.
View Article and Find Full Text PDFGeomyces destructans produces the white fungal growth on the muzzle and the tacky white discoloration on wings and ears that characterize white-nose syndrome (WNS) in cave-hibernating bats. To test the hypothesis that postemergent WNS-infected bats recover from infection with G. destructans, 30 little brown bats (Myotis lucifugus) were collected in May 2009 from a WNS-affected hibernation site in New Jersey.
View Article and Find Full Text PDFBackground: Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska.
View Article and Find Full Text PDFTo evaluate the potential toxicity of copper (Cu) in raptors that may consume Cu bullets, shotgun pellets containing Cu, or Cu fragments as they feed on wildlife carcasses, we studied the effects of metallic Cu exposure in a surrogate, the American kestrel (Falco sparverius). Sixteen kestrels were orally administered 5 mg Cu/g body mass in the form of Cu pellets (1.18-2.
View Article and Find Full Text PDFThe acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be over 20 times greater in American kestrels (Falco sparverius; median lethal dose 96.8 mg/kg body weight) compared with Northern bobwhite (Colinus virginianus) and mallards (Anas platyrhynchos). Modest evidence of internal bleeding was observed at necropsy, although histological examination of heart, liver, kidney, lung, intestine, and skeletal muscle revealed hemorrhage over a wide range of doses (35.
View Article and Find Full Text PDFWhite-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats.
View Article and Find Full Text PDFNestling birds are rarely sampled in the field for most arboviruses, yet they may be important in arbovirus amplification cycles. We sampled both nestling and adult house sparrows (Passer domesticus) in western Nebraska for West Nile virus (WNV) or WNV-specific antibodies throughout the summer of 2008 and describe pathology in naturally infected nestlings. Across the summer, 4% of nestling house sparrows were WNV-positive; for the month of August alone, 12.
View Article and Find Full Text PDF